文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用高光谱成像和卷积神经网络对头颈部癌症进行光学活检

Optical Biopsy of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks.

作者信息

Halicek Martin, Little James V, Wang Xu, Patel Mihir, Griffith Christopher C, El-Deiry Mark W, Chen Amy Y, Fei Baowei

机构信息

Georgia Institute of Technology & Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA.

Medical College of Georgia, Augusta University, Augusta, GA, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2018 Jan-Feb;10469. doi: 10.1117/12.2289023. Epub 2018 Feb 12.


DOI:10.1117/12.2289023
PMID:30197462
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6123819/
Abstract

Successful outcomes of surgical cancer resection necessitate negative, cancer-free surgical margins. Currently, tissue samples are sent to pathology for diagnostic confirmation. Hyperspectral imaging (HSI) is an emerging, non-contact optical imaging technique. A reliable optical method could serve to diagnose and biopsy specimens in real-time. Using convolutional neural networks (CNNs) as a tissue classifier, we developed a method to use HSI to perform an optical biopsy of surgical specimens, collected from 21 patients undergoing surgical cancer resection. Training and testing on samples from different patients, the CNN can distinguish squamous cell carcinoma (SCCa) from normal aerodigestive tract tissues with an area under the curve (AUC) of 0.82, 81% accuracy, 81% sensitivity, and 80% specificity. Additionally, normal oral tissues can be sub-classified into epithelium, muscle, and glandular mucosa using a decision tree method, with an average AUC of 0.94, 90% accuracy, 93% sensitivity, and 89% specificity. After separately training on thyroid tissue, the CNN differentiates between thyroid carcinoma and normal thyroid with an AUC of 0.95, 92% accuracy, 92% sensitivity, and 92% specificity. Moreover, the CNN can discriminate medullary thyroid carcinoma from benign multi-nodular goiter (MNG) with an AUC of 0.93, 87% accuracy, 88% sensitivity, and 85% specificity. Classical-type papillary thyroid carcinoma is differentiated from benign MNG with an AUC of 0.91, 86% accuracy, 86% sensitivity, and 86% specificity. Our preliminary results demonstrate that an HSI-based optical biopsy method using CNNs can provide multi-category diagnostic information for normal head-and-neck tissue, SCCa, and thyroid carcinomas. More patient data are needed in order to fully investigate the proposed technique to establish reliability and generalizability of the work.

摘要

癌症手术切除的成功结果需要手术切缘阴性且无癌。目前,组织样本被送去病理检查以进行诊断确认。高光谱成像(HSI)是一种新兴的非接触式光学成像技术。一种可靠的光学方法可用于实时诊断和活检标本。我们使用卷积神经网络(CNN)作为组织分类器,开发了一种利用HSI对手术标本进行光学活检的方法,这些标本来自21例接受癌症手术切除的患者。通过对不同患者的样本进行训练和测试,CNN能够将鳞状细胞癌(SCCa)与正常的气道消化道组织区分开来,曲线下面积(AUC)为0.82,准确率为81%,灵敏度为81%,特异性为80%。此外,使用决策树方法可将正常口腔组织细分为上皮、肌肉和腺性黏膜,平均AUC为0.94,准确率为90%,灵敏度为93%,特异性为89%。在对甲状腺组织进行单独训练后,CNN能够区分甲状腺癌和正常甲状腺,AUC为0.95,准确率为92%,灵敏度为92%,特异性为92%。此外,CNN能够将甲状腺髓样癌与良性多结节性甲状腺肿(MNG)区分开来,AUC为0.93,准确率为87%,灵敏度为88%,特异性为85%。经典型乳头状甲状腺癌与良性MNG的区分AUC为0.91,准确率为86%,灵敏度为86%,特异性为86%。我们的初步结果表明,基于HSI并使用CNN的光学活检方法可为正常头颈部组织、SCCa和甲状腺癌提供多类别诊断信息。为了全面研究该技术以确定其可靠性和工作的普遍性,还需要更多患者数据。

相似文献

[1]
Optical Biopsy of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks.

Proc SPIE Int Soc Opt Eng. 2018

[2]
Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks.

J Biomed Opt. 2019-3

[3]
Tumor Margin Classification of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks.

Proc SPIE Int Soc Opt Eng. 2018-2

[4]
Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging.

J Biomed Opt. 2017-6-1

[5]
Cancer Detection Using Hyperspectral Imaging and Evaluation of the Superficial Tumor Margin Variance with Depth.

Proc SPIE Int Soc Opt Eng. 2019-2

[6]
Hyperspectral Imaging of Head and Neck Squamous Cell Carcinoma for Cancer Margin Detection in Surgical Specimens from 102 Patients Using Deep Learning.

Cancers (Basel). 2019-9-14

[7]
Automatic optical biopsy for colorectal cancer using hyperspectral imaging and artificial neural networks.

Surg Endosc. 2022-11

[8]
Automatic detection of head and neck squamous cell carcinoma on histologic slides using hyperspectral microscopic imaging.

J Biomed Opt. 2022-4

[9]
Hyperspectral Microscopic Imaging for Automatic Detection of Head and Neck Squamous Cell Carcinoma Using Histologic Image and Machine Learning.

Proc SPIE Int Soc Opt Eng. 2020-2

[10]
Hyperspectral imaging for head and neck cancer detection: specular glare and variance of the tumor margin in surgical specimens.

J Med Imaging (Bellingham). 2019-7

引用本文的文献

[1]
Polarized Hyperspectral Microscopic Imaging for Zebrafish.

Proc SPIE Int Soc Opt Eng. 2024

[2]
An Ensemble Learning Method for Detection of Head and Neck Squamous Cell Carcinoma Using Polarized Hyperspectral Microscopic Imaging.

Proc SPIE Int Soc Opt Eng. 2024-2

[3]
Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review.

Cancers (Basel). 2022-7-14

[4]
Comparison of Whiskbroom and Pushbroom darkfield elastic light scattering spectroscopic imaging for head and neck cancer identification in a mouse model.

Anal Bioanal Chem. 2021-12

[5]
Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review.

J Imaging. 2019-5-8

[6]
Hyperspectral Imaging Reveals Spectral Differences and Can Distinguish Malignant Melanoma from Pigmented Basal Cell Carcinomas: A Pilot Study.

Acta Derm Venereol. 2021-2-19

[7]
Comprehensive review of surgical microscopes: technology development and medical applications.

J Biomed Opt. 2021-1

[8]
Cancer Detection Using Hyperspectral Imaging and Evaluation of the Superficial Tumor Margin Variance with Depth.

Proc SPIE Int Soc Opt Eng. 2019-2

[9]
Hyperspectral imaging for head and neck cancer detection: specular glare and variance of the tumor margin in surgical specimens.

J Med Imaging (Bellingham). 2019-7

[10]
Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks.

J Biomed Opt. 2019-3

本文引用的文献

[1]
Label-free hyperspectral imaging and quantification methods for surgical margin assessment of tissue specimens of cancer patients.

Annu Int Conf IEEE Eng Med Biol Soc. 2017-7

[2]
Detection and delineation of squamous neoplasia with hyperspectral imaging in a mouse model of tongue carcinogenesis.

J Biophotonics. 2018-3

[3]
Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients.

J Biomed Opt. 2017-8

[4]
Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging.

J Biomed Opt. 2017-6-1

[5]
Prognostic factors for recurrence of locally advanced differentiated thyroid cancer.

J Surg Oncol. 2017-12

[6]
Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging.

Clin Cancer Res. 2017-6-13

[7]
Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery.

J Biomed Opt. 2015

[8]
Racial disparities in squamous cell carcinoma of the oral tongue among women: a SEER data analysis.

Oral Oncol. 2015-6

[9]
Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.

Int J Cancer. 2014-10-9

[10]
Medical hyperspectral imaging: a review.

J Biomed Opt. 2014-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索