Halicek Martin, Little James V, Wang Xu, Patel Mihir, Griffith Christopher C, El-Deiry Mark W, Chen Amy Y, Fei Baowei
Georgia Institute of Technology & Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA.
Medical College of Georgia, Augusta University, Augusta, GA, USA.
Proc SPIE Int Soc Opt Eng. 2018 Jan-Feb;10469. doi: 10.1117/12.2289023. Epub 2018 Feb 12.
Successful outcomes of surgical cancer resection necessitate negative, cancer-free surgical margins. Currently, tissue samples are sent to pathology for diagnostic confirmation. Hyperspectral imaging (HSI) is an emerging, non-contact optical imaging technique. A reliable optical method could serve to diagnose and biopsy specimens in real-time. Using convolutional neural networks (CNNs) as a tissue classifier, we developed a method to use HSI to perform an optical biopsy of surgical specimens, collected from 21 patients undergoing surgical cancer resection. Training and testing on samples from different patients, the CNN can distinguish squamous cell carcinoma (SCCa) from normal aerodigestive tract tissues with an area under the curve (AUC) of 0.82, 81% accuracy, 81% sensitivity, and 80% specificity. Additionally, normal oral tissues can be sub-classified into epithelium, muscle, and glandular mucosa using a decision tree method, with an average AUC of 0.94, 90% accuracy, 93% sensitivity, and 89% specificity. After separately training on thyroid tissue, the CNN differentiates between thyroid carcinoma and normal thyroid with an AUC of 0.95, 92% accuracy, 92% sensitivity, and 92% specificity. Moreover, the CNN can discriminate medullary thyroid carcinoma from benign multi-nodular goiter (MNG) with an AUC of 0.93, 87% accuracy, 88% sensitivity, and 85% specificity. Classical-type papillary thyroid carcinoma is differentiated from benign MNG with an AUC of 0.91, 86% accuracy, 86% sensitivity, and 86% specificity. Our preliminary results demonstrate that an HSI-based optical biopsy method using CNNs can provide multi-category diagnostic information for normal head-and-neck tissue, SCCa, and thyroid carcinomas. More patient data are needed in order to fully investigate the proposed technique to establish reliability and generalizability of the work.
癌症手术切除的成功结果需要手术切缘阴性且无癌。目前,组织样本被送去病理检查以进行诊断确认。高光谱成像(HSI)是一种新兴的非接触式光学成像技术。一种可靠的光学方法可用于实时诊断和活检标本。我们使用卷积神经网络(CNN)作为组织分类器,开发了一种利用HSI对手术标本进行光学活检的方法,这些标本来自21例接受癌症手术切除的患者。通过对不同患者的样本进行训练和测试,CNN能够将鳞状细胞癌(SCCa)与正常的气道消化道组织区分开来,曲线下面积(AUC)为0.82,准确率为81%,灵敏度为81%,特异性为80%。此外,使用决策树方法可将正常口腔组织细分为上皮、肌肉和腺性黏膜,平均AUC为0.94,准确率为90%,灵敏度为93%,特异性为89%。在对甲状腺组织进行单独训练后,CNN能够区分甲状腺癌和正常甲状腺,AUC为0.95,准确率为92%,灵敏度为92%,特异性为92%。此外,CNN能够将甲状腺髓样癌与良性多结节性甲状腺肿(MNG)区分开来,AUC为0.93,准确率为87%,灵敏度为88%,特异性为85%。经典型乳头状甲状腺癌与良性MNG的区分AUC为0.91,准确率为86%,灵敏度为86%,特异性为86%。我们的初步结果表明,基于HSI并使用CNN的光学活检方法可为正常头颈部组织、SCCa和甲状腺癌提供多类别诊断信息。为了全面研究该技术以确定其可靠性和工作的普遍性,还需要更多患者数据。
Proc SPIE Int Soc Opt Eng. 2018
Proc SPIE Int Soc Opt Eng. 2018-2
Proc SPIE Int Soc Opt Eng. 2019-2
J Med Imaging (Bellingham). 2019-7
Proc SPIE Int Soc Opt Eng. 2024
Proc SPIE Int Soc Opt Eng. 2019-2
J Med Imaging (Bellingham). 2019-7
Annu Int Conf IEEE Eng Med Biol Soc. 2017-7
J Surg Oncol. 2017-12
Clin Cancer Res. 2017-6-13
J Biomed Opt. 2014-1