Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany.
Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055 Shenzhen, China.
Int J Mol Sci. 2018 Aug 31;19(9):2588. doi: 10.3390/ijms19092588.
Positron emission tomography (PET) radioligands targeting the human translocator membrane protein (TSPO) are broadly used for the investigations of neuroinflammatory conditions associated with neurological disorders. Structural information on the mammalian protein homodimers-the suggested functional state of the protein-is limited to a solid-state nuclear magnetic resonance (NMR) study and to a model based on the previously-deposited solution NMR structure of the monomeric mouse protein. Computational studies performed here suggest that the NMR-solved structure in the presence of detergents is not prone to dimer formation and is furthermore unstable in its native membrane environment. We, therefore, propose a new model of the functionally-relevant dimeric form of the mouse protein, based on a prokaryotic homologue. The model, fully consistent with solid-state NMR data, is very different from the previous predictions. Hence, it provides, for the first time, structural insights into this pharmaceutically-important target which are fully consistent with experimental data.
正电子发射断层扫描(PET)放射性配体靶向人类转位蛋白(TSPO)广泛用于研究与神经紊乱相关的神经炎症状况。哺乳动物蛋白同源二聚体的结构信息 - 该蛋白的建议功能状态 - 仅限于固态核磁共振(NMR)研究和基于先前沉积的单体小鼠蛋白溶液 NMR 结构的模型。这里进行的计算研究表明,在去污剂存在下解决的 NMR 结构不易形成二聚体,并且在其天然膜环境中不稳定。因此,我们基于原核同源物提出了一种新的功能相关的小鼠蛋白二聚体形式的模型。该模型与固态 NMR 数据完全一致,与以前的预测有很大不同。因此,它首次为该药物重要靶点提供了与实验数据完全一致的结构见解。