Suppr超能文献

早期哺乳动物发育过程中的能量代谢调控:TEAD4 控制线粒体转录。

Regulation of energy metabolism during early mammalian development: TEAD4 controls mitochondrial transcription.

机构信息

Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA

Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.

出版信息

Development. 2018 Oct 1;145(19):dev162644. doi: 10.1242/dev.162644.

Abstract

Early mammalian development is crucially dependent on the establishment of oxidative energy metabolism within the trophectoderm (TE) lineage. Unlike the inner cell mass, TE cells enhance ATP production via mitochondrial oxidative phosphorylation (OXPHOS) and this metabolic preference is essential for blastocyst maturation. However, molecular mechanisms that regulate establishment of oxidative energy metabolism in TE cells are incompletely understood. Here, we show that conserved transcription factor TEAD4, which is essential for pre-implantation mammalian development, regulates this process by promoting mitochondrial transcription. In developing mouse TE and TE-derived trophoblast stem cells (TSCs), TEAD4 localizes to mitochondria, binds to mitochondrial DNA (mtDNA) and facilitates its transcription by recruiting mitochondrial RNA polymerase (POLRMT). Loss of TEAD4 impairs recruitment of POLRMT, resulting in reduced expression of mtDNA-encoded electron transport chain components, thereby inhibiting oxidative energy metabolism. Our studies identify a novel TEAD4-dependent molecular mechanism that regulates energy metabolism in the TE lineage to ensure mammalian development.

摘要

早期哺乳动物的发育严重依赖于滋养外胚层(TE)谱系中氧化能量代谢的建立。与内细胞团不同,TE 细胞通过线粒体氧化磷酸化(OXPHOS)增强 ATP 的产生,这种代谢偏好对于囊胚成熟至关重要。然而,调节 TE 细胞氧化能量代谢建立的分子机制尚不完全清楚。在这里,我们表明,对于植入前哺乳动物发育至关重要的保守转录因子 TEAD4 通过促进线粒体转录来调节这一过程。在发育中的小鼠 TE 和 TE 衍生的滋养层干细胞(TSC)中,TEAD4 定位于线粒体,与线粒体 DNA(mtDNA)结合,并通过招募线粒体 RNA 聚合酶(POLRMT)促进其转录。TEAD4 的缺失会损害 POLRMT 的募集,导致 mtDNA 编码的电子传递链组件的表达减少,从而抑制氧化能量代谢。我们的研究确定了一种新的 TEAD4 依赖性分子机制,该机制调节 TE 谱系中的能量代谢,以确保哺乳动物的发育。

相似文献

引用本文的文献

2
Arginine: at the crossroads of nitrogen metabolism.精氨酸:处于氮代谢的十字路口。
EMBO J. 2025 Mar;44(5):1275-1293. doi: 10.1038/s44318-025-00379-3. Epub 2025 Feb 7.
7
The aryl hydrocarbon receptor directs the differentiation of murine progenitor blastomeres.芳香烃受体指导鼠原代胚泡的分化。
Cell Biol Toxicol. 2023 Aug;39(4):1657-1676. doi: 10.1007/s10565-022-09755-9. Epub 2022 Aug 27.
8
TEAD4 as an Oncogene and a Mitochondrial Modulator.TEAD4作为一种癌基因和线粒体调节剂。
Front Cell Dev Biol. 2022 May 5;10:890419. doi: 10.3389/fcell.2022.890419. eCollection 2022.

本文引用的文献

1
Structural Basis of Mitochondrial Transcription Initiation.线粒体转录起始的结构基础
Cell. 2017 Nov 16;171(5):1072-1081.e10. doi: 10.1016/j.cell.2017.10.036.
4
Maintenance and Expression of Mammalian Mitochondrial DNA.哺乳动物线粒体 DNA 的维持和表达。
Annu Rev Biochem. 2016 Jun 2;85:133-60. doi: 10.1146/annurev-biochem-060815-014402. Epub 2016 Mar 24.
8
Efficient Mitochondrial Genome Editing by CRISPR/Cas9.利用CRISPR/Cas9进行高效的线粒体基因组编辑
Biomed Res Int. 2015;2015:305716. doi: 10.1155/2015/305716. Epub 2015 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验