Suppr超能文献

TEAD4 通过促进滋养层自我更新来确保胚胎着床后发育:对早期人类妊娠丢失的影响。

TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss.

机构信息

Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160.

Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160.

出版信息

Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17864-17875. doi: 10.1073/pnas.2002449117. Epub 2020 Jul 15.

Abstract

Early pregnancy loss affects ∼15% of all implantation-confirmed human conceptions. However, evolutionarily conserved molecular mechanisms that regulate self-renewal of trophoblast progenitors and their association with early pregnancy loss are poorly understood. Here, we provide evidence that transcription factor TEAD4 ensures survival of postimplantation mouse and human embryos by controlling self-renewal and stemness of trophoblast progenitors within the placenta primordium. In an early postimplantation mouse embryo, TEAD4 is selectively expressed in trophoblast stem cell-like progenitor cells (TSPCs), and loss of in postimplantation mouse TSPCs impairs their self-renewal, leading to embryonic lethality before embryonic day 9.0, a developmental stage equivalent to the first trimester of human gestation. Both TEAD4 and its cofactor, yes-associated protein 1 (YAP1), are specifically expressed in cytotrophoblast (CTB) progenitors of a first-trimester human placenta. We also show that a subset of unexplained recurrent pregnancy losses (idiopathic RPLs) is associated with impaired TEAD4 expression in CTB progenitors. Furthermore, by establishing idiopathic RPL patient-specific human trophoblast stem cells (RPL-TSCs), we show that loss of TEAD4 is associated with defective self-renewal in RPL-TSCs and rescue of TEAD4 expression restores their self-renewal ability. Unbiased genomics studies revealed that TEAD4 directly regulates expression of key cell cycle genes in both mouse and human TSCs and establishes a conserved transcriptional program. Our findings show that TEAD4, an effector of the Hippo signaling pathway, is essential for the establishment of pregnancy in a postimplantation mammalian embryo and indicate that impairment of the Hippo signaling pathway could be a molecular cause for early human pregnancy loss.

摘要

早期妊娠丢失影响所有着床确认的人类胚胎的 ∼15%。然而,调节滋养层祖细胞自我更新及其与早期妊娠丢失关联的进化保守的分子机制仍知之甚少。在这里,我们提供的证据表明,转录因子 TEAD4 通过控制胎盘原基内滋养层祖细胞的自我更新和干细胞特性,确保了着床后小鼠和人类胚胎的存活。在着床后早期的小鼠胚胎中,TEAD4 选择性地在滋养层干细胞样祖细胞(TSPCs)中表达,而在着床后小鼠 TSPCs 中缺失 会损害其自我更新,导致胚胎在胚胎第 9.0 天之前死亡,这一发育阶段相当于人类妊娠的第一 trimester。TEAD4 和其共激活因子 yes 相关蛋白 1(YAP1)都特异性地在人类第一 trimester 胎盘的细胞滋养层(CTB)祖细胞中表达。我们还表明,一部分原因不明的复发性妊娠丢失(特发性 RPL)与 CTB 祖细胞中 TEAD4 表达受损有关。此外,通过建立特发性 RPL 患者特异性的人类滋养层干细胞(RPL-TSCs),我们表明 TEAD4 的缺失与 RPL-TSCs 的自我更新缺陷有关,并且恢复 TEAD4 的表达可恢复其自我更新能力。无偏基因组学研究表明,TEAD4 直接调节小鼠和人类 TSCs 中关键细胞周期基因的表达,并建立了保守的转录程序。我们的研究结果表明,Hippo 信号通路的效应因子 TEAD4 对于着床后哺乳动物胚胎妊娠的建立是必不可少的,并表明 Hippo 信号通路的损害可能是早期人类妊娠丢失的分子原因。

相似文献

1
TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17864-17875. doi: 10.1073/pnas.2002449117. Epub 2020 Jul 15.
2
Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13562-13570. doi: 10.1073/pnas.2002630117. Epub 2020 Jun 1.
3
Atypical protein kinase C iota (PKCλ/ι) ensures mammalian development by establishing the maternal-fetal exchange interface.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14280-14291. doi: 10.1073/pnas.1920201117. Epub 2020 Jun 8.
5
Deciphering a distinct regulatory network of TEAD4, CDX2 and GATA3 in humans for trophoblast transition from embryonic stem cells.
Biochim Biophys Acta Mol Cell Res. 2020 Sep;1867(9):118736. doi: 10.1016/j.bbamcr.2020.118736. Epub 2020 May 7.
7
Hippo signaling cofactor, WWTR1, at the crossroads of human trophoblast progenitor self-renewal and differentiation.
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2204069119. doi: 10.1073/pnas.2204069119. Epub 2022 Aug 29.

引用本文的文献

2
Leveraging chorionic villus biopsies for the derivation of patient-specific trophoblast stem cells.
Commun Biol. 2025 Jul 1;8(1):964. doi: 10.1038/s42003-025-08393-1.
3
The human placenta and its role in reproductive outcomes revisited.
Physiol Rev. 2025 Oct 1;105(4):2305-2376. doi: 10.1152/physrev.00039.2024. Epub 2025 Jun 11.
4
Hippo signaling in mammalian reproduction.
Reproduction. 2025 May 30;169(6). doi: 10.1530/REP-25-0016. Print 2025 Jun 1.
6
Dysregulation of MYBL2 impairs extravillous trophoblast lineage development and function, contributing to recurrent spontaneous abortion.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2421653122. doi: 10.1073/pnas.2421653122. Epub 2025 Apr 28.
8
The multifaceted roles of the transcriptional coactivator TAZ in extravillous trophoblast development of the human placenta.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2426385122. doi: 10.1073/pnas.2426385122. Epub 2025 Apr 14.
9
The TEA domain transcription factors TEAD1 and TEAD3 and WNT signaling determine HLA-G expression in human extravillous trophoblasts.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2425339122. doi: 10.1073/pnas.2425339122. Epub 2025 Mar 17.
10
Gestational Diabetes Mellitus: Mechanisms Underlying Maternal and Fetal Complications.
Endocrinol Metab (Seoul). 2025 Feb;40(1):10-25. doi: 10.3803/EnM.2024.2264. Epub 2025 Jan 23.

本文引用的文献

1
Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13562-13570. doi: 10.1073/pnas.2002630117. Epub 2020 Jun 1.
2
Mechanisms of early placental development in mouse and humans.
Nat Rev Genet. 2020 Jan;21(1):27-43. doi: 10.1038/s41576-019-0169-4. Epub 2019 Sep 18.
3
Human placenta and trophoblast development: key molecular mechanisms and model systems.
Cell Mol Life Sci. 2019 Sep;76(18):3479-3496. doi: 10.1007/s00018-019-03104-6. Epub 2019 May 3.
4
Trophoblast organoids as a model for maternal-fetal interactions during human placentation.
Nature. 2018 Dec;564(7735):263-267. doi: 10.1038/s41586-018-0753-3. Epub 2018 Nov 28.
7
Transcription factor ASCL2 is required for development of the glycogen trophoblast cell lineage.
PLoS Genet. 2018 Aug 10;14(8):e1007587. doi: 10.1371/journal.pgen.1007587. eCollection 2018 Aug.
8
Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta.
Stem Cell Reports. 2018 Aug 14;11(2):537-551. doi: 10.1016/j.stemcr.2018.07.004. Epub 2018 Aug 2.
9
Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta.
Cell Res. 2018 Aug;28(8):819-832. doi: 10.1038/s41422-018-0066-y. Epub 2018 Jul 24.
10
Placentation defects are highly prevalent in embryonic lethal mouse mutants.
Nature. 2018 Mar 22;555(7697):463-468. doi: 10.1038/nature26002. Epub 2018 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验