Suppr超能文献

拓扑量子光源。

A topological source of quantum light.

机构信息

Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA.

IREAP/Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA.

出版信息

Nature. 2018 Sep;561(7724):502-506. doi: 10.1038/s41586-018-0478-3. Epub 2018 Sep 10.

Abstract

Quantum light is characterized by distinctive statistical distributions that are possible only because of quantum mechanical effects. For example, single photons and correlated photon pairs exhibit photon number distributions with variance lower than classically allowed limits. This enables high-fidelity transmission of quantum information and sensing with lower noise than possible with classical light sources. Most quantum light sources rely on spontaneous parametric processes such as down-conversion and four-wave mixing. These processes are mediated by vacuum fluctuations of the electromagnetic field. Therefore, by manipulating the electromagnetic mode structure, for example with dispersion-engineered nanophotonic systems, the spectrum of generated photons can be controlled. However, disorder, which is ubiquitous in nanophotonic fabrication, causes device-to-device spectral variations. Here we realize topologically robust electromagnetic modes and use their vacuum fluctuations to create a quantum light source in which the spectrum of generated photons is much less affected by fabrication-induced disorder. Specifically, we use the topological edge states realized in a two-dimensional array of ring resonators to generate correlated photon pairs by spontaneous four-wave mixing and show that they outperform their topologically trivial one-dimensional counterparts in terms of spectral robustness. We demonstrate the non-classical nature of the generated light and the realization of a robust source of heralded single photons by measuring the conditional antibunching of photons, that is, the reduced likelihood of photons arriving together compared to thermal or laser light. Such topological effects, which are unique to bosonic systems, could pave the way for the development of robust quantum photonic devices.

摘要

量子光的特点是具有独特的统计分布,这只有在量子力学效应的作用下才有可能。例如,单光子和相关的光子对表现出的光子数分布的方差低于经典允许的极限。这使得量子信息能够以比经典光源更低的噪声进行高保真度传输和传感。大多数量子光源依赖于自发参量过程,如下转换和四波混频。这些过程是由电磁场的真空涨落介导的。因此,通过操纵电磁模式结构,例如使用具有色散工程的纳米光子系统,可以控制产生的光子的光谱。然而,在纳米光子学制造中普遍存在的无序会导致器件之间的光谱变化。在这里,我们实现了拓扑稳定的电磁模式,并利用它们的真空涨落来创建一个量子光源,其中产生的光子的光谱受制造引起的无序的影响要小得多。具体来说,我们使用在环形谐振器二维阵列中实现的拓扑边缘态通过自发四波混频产生相关的光子对,并表明它们在光谱稳定性方面优于拓扑平凡的一维对应物。我们通过测量光子的条件反聚束来证明所产生光的非经典性质,即与热光或激光相比,光子同时到达的可能性降低。这种独特于玻色系统的拓扑效应可能为开发稳健的量子光子器件铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验