Suppr超能文献

高通量卵巢滤泡计数的创新深度学习方法。

High-throughput ovarian follicle counting by an innovative deep learning approach.

机构信息

Inserm U1185, Univ Parus Sud, Université Paris Sud, 94276, Le Kremlin Bicetre, France.

Quantmetry, 128 rue du Faubourg Saint Honoré, 75008, Paris, France.

出版信息

Sci Rep. 2018 Sep 10;8(1):13499. doi: 10.1038/s41598-018-31883-8.

Abstract

The evaluation of the number of mouse ovarian primordial follicles (PMF) can provide important information about ovarian function, regulation of folliculogenesis or the impact of chemotherapy on fertility. This counting, usually performed by specialized operators, is a tedious, time-consuming but indispensable procedure.The development and increasing use of deep machine learning algorithms promise to speed up and improve this process. Here, we present a new methodology of automatically detecting and counting PMF, using convolutional neural networks driven by labelled datasets and a sliding window algorithm to select test data. Trained from a database of 9 millions of images extracted from mouse ovaries, and tested over two ovaries (3 millions of images to classify and 2 000 follicles to detect), the algorithm processes the digitized histological slides of a completed ovary in less than one minute, dividing the usual processing time by a factor of about 30. It also outperforms the measurements made by a pathologist through optical detection. Its ability to correct label errors enables conducting an active learning process with the operator, improving the overall counting iteratively. These results could be suitable to adapt the methodology to the human ovarian follicles by transfer learning.

摘要

评估小鼠卵巢原始卵泡(PMF)的数量可以提供有关卵巢功能、卵泡发生调节或化疗对生育能力影响的重要信息。这种计数通常由专业操作人员进行,是一项繁琐、耗时但必不可少的程序。深度学习算法的发展和日益普及有望加速和改进这一过程。在这里,我们提出了一种使用卷积神经网络自动检测和计数 PMF 的新方法,该方法使用标记数据集和滑动窗口算法来选择测试数据。该算法从提取自小鼠卵巢的 900 万张图像的数据库中进行训练,并在两个卵巢上进行测试(300 万张图像用于分类,2000 个卵泡用于检测),可以在不到一分钟的时间内处理完整卵巢的数字化组织学切片,将通常的处理时间缩短约 30 倍。它还优于病理学家通过光学检测进行的测量。它纠正标签错误的能力使得可以与操作员一起进行主动学习过程,从而逐步改进整体计数。这些结果可能适合通过迁移学习将该方法应用于人类卵巢卵泡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e1d/6131397/9c31c23b9736/41598_2018_31883_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验