Suppr超能文献

深度学习在乳腺癌 HER2 状态诊断中的相关性。

Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer.

机构信息

Personalised Healthcare &Biomarkers, IMED Biotech Unit, AstraZeneca, HODGKIN, C/o B310 Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, United Kingdom.

Pathology, Drug Safety &Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, 431 50 Mölndal, Sweden.

出版信息

Sci Rep. 2017 Apr 5;7:45938. doi: 10.1038/srep45938.

Abstract

Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potential to supplement pathologist expertise to ensure constant diagnostic accuracy. We developed a computational approach based on deep learning that automatically scores HER2, a biomarker that defines patient eligibility for anti-HER2 targeted therapies in breast cancer. In a cohort of 71 breast tumour resection samples, automated scoring showed a concordance of 83% with a pathologist. The twelve discordant cases were then independently reviewed, leading to a modification of diagnosis from initial pathologist assessment for eight cases. Diagnostic discordance was found to be largely caused by perceptual differences in assessing HER2 expression due to high HER2 staining heterogeneity. This study provides evidence that deep learning aided diagnosis can facilitate clinical decision making in breast cancer by identifying cases at high risk of misdiagnosis.

摘要

病理学家对组织生物标志物的评分是为癌症患者确定适当治疗方法的核心。然而,病理学家在解释模棱两可的病例时存在的变异性可能会影响诊断准确性。现代人工智能方法,如深度学习,有可能补充病理学家的专业知识,以确保诊断的准确性。我们开发了一种基于深度学习的计算方法,该方法可以自动对 HER2 进行评分,HER2 是一种生物标志物,可确定乳腺癌患者是否有资格接受抗 HER2 靶向治疗。在 71 例乳腺肿瘤切除样本的队列中,自动评分与病理学家的评分一致性为 83%。然后对 12 个不一致的病例进行独立复查,导致 8 例初始病理学家评估的诊断发生改变。诊断不一致主要是由于高 HER2 染色异质性导致评估 HER2 表达的感知差异所致。这项研究提供了证据,表明深度学习辅助诊断可以通过识别高误诊风险的病例来促进乳腺癌的临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验