Hassan Maya Haj, Reiter Eric, Razzaq Misbah
INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France.
Université Paris-Saclay, Inria, Inria Saclay-Île-de-France, Palaiseau, 91120, France.
Sci Rep. 2024 Dec 30;14(1):31856. doi: 10.1038/s41598-024-82904-8.
Ovaries are of paramount importance in reproduction as they produce female gametes through a complex developmental process known as folliculogenesis. In the prospect of better understanding the mechanisms of folliculogenesis and of developing novel pharmacological approaches to control it, it is important to accurately and quantitatively assess the later stages of ovarian folliculogenesis (i.e. the formation of antral follicles and corpus lutea). Manual counting from histological sections is commonly employed to determine the number of these follicular structures, however it is a laborious and error prone task. In this work, we show the benefits of deep learning models for counting antral follicles and corpus lutea in ovarian histology sections. Here, we use various backbone architectures to build two one-stage object detection models, i.e. YOLO and RetinaNet. We employ transfer learning, early stopping, and data augmentation approaches to improve the generalizability of the object detectors. Furthermore, we use sampling strategy to mitigate the foreground-foreground class imbalance and focal loss to reduce the imbalance between the foreground-background classes. Our models were trained and validated using a dataset containing only 1000 images. With RetinaNet, we achieved a mean average precision of 83% whereas with YOLO of 75% on the testing dataset. Our results demonstrate that deep learning methods are useful to speed up the follicle counting process and improve accuracy by correcting manual counting errors.
卵巢在生殖过程中至关重要,因为它们通过一个称为卵泡发生的复杂发育过程产生雌性配子。为了更好地理解卵泡发生的机制并开发控制卵泡发生的新型药理学方法,准确和定量地评估卵巢卵泡发生的后期阶段(即窦卵泡和黄体的形成)非常重要。从组织学切片进行人工计数通常用于确定这些卵泡结构的数量,然而这是一项费力且容易出错的任务。在这项工作中,我们展示了深度学习模型在卵巢组织学切片中计数窦卵泡和黄体的优势。在这里,我们使用各种骨干架构构建了两个单阶段目标检测模型,即YOLO和RetinaNet。我们采用迁移学习、早停和数据增强方法来提高目标检测器的泛化能力。此外,我们使用采样策略来减轻前景-前景类不平衡,并使用焦点损失来减少前景-背景类之间的不平衡。我们的模型使用仅包含1000张图像的数据集进行训练和验证。在测试数据集上,使用RetinaNet时我们实现了83%的平均精度,而使用YOLO时为75%。我们的结果表明,深度学习方法有助于加快卵泡计数过程,并通过纠正人工计数错误提高准确性。