Suppr超能文献

拟南芥保卫细胞壁和角苔属 Phaeoceros 中的果胶聚合物反映了生理差异。

Contrasting pectin polymers in guard cell walls of Arabidopsis and the hornwort Phaeoceros reflect physiological differences.

机构信息

Institute of Neurobiology, University of Puerto Rico, San Juan, PR, Puerto Rico.

Department of Plant Biology, Southern Illinois University, Carbondale, IL, USA.

出版信息

Ann Bot. 2019 Mar 14;123(4):579-585. doi: 10.1093/aob/mcy168.

Abstract

BACKGROUND AND AIMS

In seed plants, stomata regulate CO2 acquisition and water relations via transpiration, while minimizing water loss. Walls of guard cells are strong yet flexible because they open and close the pore by changing shape over the substomatal cavity. Pectins are necessary for wall flexibility and proper stomata functioning. This study investigates the differences in pectin composition in guard cells of two taxa that represent key lineages of plants with stomata: Arabidopsis, an angiosperm with diurnal stomatal activity, and Phaeoceros, a bryophyte that lacks active stomatal movement.

METHODS

Using immunolocalization techniques in transmission electron microscopy, this study describes and compares the localization of pectin molecule epitopes essential to stomata function in guard cell walls of Arabidopsis and Phaeoceros.

KEY RESULTS

In Arabidopsis, unesterified homogalacturonans very strongly localize throughout guard cell walls and are interspersed with arabinan pectins, while methyl-esterified homogalacturonans are restricted to the exterior of the wall, the ledges and the junction with adjacent epidermal cells. In contrast, arabinans are absent in Phaeoceros, and both unesterified and methyl-esterified homogalacturonans localize throughout guard cell walls.

CONCLUSIONS

Arabinans and unesterified homogalacturonans are required for wall flexibility, which is consistent with active regulation of pore opening in Arabidopsis stomata. In contrast, the lack of arabinans and high levels of methyl-esterified homogalacturonans in guard cell walls of Phaeoceros are congruent with the inability of hornwort stomata to open and close with environmental change. Comparisons across groups demonstrate that variations in guard cell wall composition reflect different physiological activity of stomata in land plants.

摘要

背景与目的

在种子植物中,气孔通过蒸腾作用调节 CO2 摄取和水分关系,同时最大限度地减少水分流失。保卫细胞的细胞壁坚固而柔韧,因为它们通过改变形状来打开和关闭位于副卫细胞腔上的孔隙。果胶对于细胞壁的柔韧性和适当的气孔功能是必需的。本研究调查了代表具有气孔的植物关键谱系的两个分类群的保卫细胞中果胶组成的差异:拟南芥,一种具有昼夜气孔活动的被子植物,和 Phaeoceros,一种缺乏主动气孔运动的苔藓植物。

方法

本研究使用透射电子显微镜中的免疫定位技术,描述并比较了拟南芥和 Phaeoceros 保卫细胞细胞壁中对气孔功能至关重要的果胶分子表位的定位。

主要结果

在拟南芥中,未酯化的同质半乳糖醛酸聚糖强烈地定位于整个保卫细胞壁,并与阿拉伯聚糖果胶交错,而甲基酯化的同质半乳糖醛酸聚糖则局限于细胞壁的外部、壁缘和与相邻表皮细胞的交界处。相比之下,阿拉伯聚糖在 Phaeoceros 中不存在,而未酯化和甲基酯化的同质半乳糖醛酸聚糖都定位于整个保卫细胞壁中。

结论

阿拉伯聚糖和未酯化的同质半乳糖醛酸聚糖是细胞壁柔韧性所必需的,这与拟南芥气孔中孔隙开放的主动调节一致。相比之下,Phaeoceros 保卫细胞壁中阿拉伯聚糖的缺乏和高水平的甲基酯化同质半乳糖醛酸聚糖与角苔气孔无法随环境变化打开和关闭相一致。跨组比较表明,保卫细胞壁组成的变化反映了陆地植物中气孔不同的生理活性。

相似文献

3
Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves.
Plant Physiol. 2017 Jun;174(2):788-797. doi: 10.1104/pp.17.00156. Epub 2017 Apr 18.
4
Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening.
Curr Biol. 2022 Jul 25;32(14):3170-3179.e4. doi: 10.1016/j.cub.2022.05.042. Epub 2022 Jun 7.
5
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.
Curr Biol. 2016 Nov 7;26(21):2899-2906. doi: 10.1016/j.cub.2016.08.021. Epub 2016 Oct 6.
6
Hornwort stomata do not respond actively to exogenous and environmental cues.
Ann Bot. 2018 Jun 28;122(1):45-57. doi: 10.1093/aob/mcy045.
7
Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells.
Curr Biol. 2017 Oct 9;27(19):2974-2983.e2. doi: 10.1016/j.cub.2017.08.006. Epub 2017 Sep 21.
8
Architecture and functions of stomatal cell walls in eudicots and grasses.
Ann Bot. 2024 Jul 9;134(2):195-204. doi: 10.1093/aob/mcae078.
9
Degree of pectin methyl esterification in endosperm cell walls is involved in embryo bending in Arabidopsis thaliana.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):639-645. doi: 10.1016/j.bbrc.2017.11.077. Epub 2017 Nov 12.

引用本文的文献

1
Advanced imaging-enabled understanding of cell wall remodeling mechanisms mediating plant drought stress tolerance.
Front Plant Sci. 2025 Aug 8;16:1635078. doi: 10.3389/fpls.2025.1635078. eCollection 2025.
2
Do Arabinogalactan Proteins Occur in the Transfer Cells of ?
Int J Mol Sci. 2024 Jun 16;25(12):6623. doi: 10.3390/ijms25126623.
3
Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of Arabidopsis against Botrytis cinerea.
Plant Physiol. 2022 Jun 27;189(3):1794-1813. doi: 10.1093/plphys/kiac165.
4
Stomata: the holey grail of plant evolution.
Am J Bot. 2021 Mar;108(3):366-371. doi: 10.1002/ajb2.1619. Epub 2021 Mar 9.
6
The hornworts: morphology, evolution and development.
New Phytol. 2021 Jan;229(2):735-754. doi: 10.1111/nph.16874. Epub 2020 Sep 15.
7
With Over 60 Independent Losses, Stomata Are Expendable in Mosses.
Front Plant Sci. 2020 May 28;11:567. doi: 10.3389/fpls.2020.00567. eCollection 2020.
8
The Living Fossil Has Cortical Fibers With Mannan-Based Cell Wall Matrix.
Front Plant Sci. 2020 Apr 28;11:488. doi: 10.3389/fpls.2020.00488. eCollection 2020.

本文引用的文献

1
Hornwort stomata do not respond actively to exogenous and environmental cues.
Ann Bot. 2018 Jun 28;122(1):45-57. doi: 10.1093/aob/mcy045.
2
Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves.
Plant Physiol. 2017 Jun;174(2):788-797. doi: 10.1104/pp.17.00156. Epub 2017 Apr 18.
4
What are the evolutionary origins of stomatal responses to abscisic acid in land plants?
J Integr Plant Biol. 2017 Apr;59(4):240-260. doi: 10.1111/jipb.12523. Epub 2017 Mar 16.
5
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.
Curr Biol. 2016 Nov 7;26(21):2899-2906. doi: 10.1016/j.cub.2016.08.021. Epub 2016 Oct 6.
6
Tuning of pectin methylesterification: consequences for cell wall biomechanics and development.
Planta. 2015 Oct;242(4):791-811. doi: 10.1007/s00425-015-2358-5. Epub 2015 Jul 14.
7
Novel insights on the structure and composition of pseudostomata of Sphagnum.
Am J Bot. 2015 Mar;102(3):329-35. doi: 10.3732/ajb.1400564. Epub 2015 Mar 9.
9
Homogalacturonan-modifying enzymes: structure, expression, and roles in plants.
J Exp Bot. 2014 Oct;65(18):5125-60. doi: 10.1093/jxb/eru272. Epub 2014 Jul 23.
10
Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation.
Planta. 2013 Mar;237(3):739-54. doi: 10.1007/s00425-012-1785-9. Epub 2012 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验