Suppr超能文献

角苔类气孔对外源和环境信号没有积极响应。

Hornwort stomata do not respond actively to exogenous and environmental cues.

机构信息

Life Sciences Department, Natural History Museum, London, UK.

Plant Biology Department, Southern Illinois University, Carbondale, USA.

出版信息

Ann Bot. 2018 Jun 28;122(1):45-57. doi: 10.1093/aob/mcy045.

Abstract

BACKGROUNDS AND AIMS

Because stomata in bryophytes occur on sporangia, they are subject to different developmental and evolutionary constraints from those on leaves of tracheophytes. No conclusive experimental evidence exists on the responses of hornwort stomata to exogenous stimulation.

METHODS

Responses of hornwort stomata to abscisic acid (ABA), desiccation, darkness and plasmolysis were compared with those in tracheophyte leaves. Potassium ion concentrations in the guard cells and adjacent cells were analysed by X-ray microanalysis, and the ontogeny of the sporophytic intercellular spaces was compared with those of tracheophytes by cryo-scanning electron microscopy.

KEY RESULTS

The apertures in hornwort stomata open early in development and thereafter remain open. In hornworts, the experimental treatments, based on measurements of >9000 stomata, produced only a slight reduction in aperture dimensions after desiccation and plasmolysis, and no changes following ABA treatments and darkness. In tracheophytes, all these treatments resulted in complete stomatal closure. Potassium concentrations are similar in hornwort guard cells and epidermal cells under all treatments at all times. The small changes in hornwort stomatal dimensions in response to desiccation and plasmolysis are probably mechanical and/or stress responses of all the epidermal and spongy chlorophyllose cells, affecting the guard cells. In contrast to their nascent gas-filled counterparts across tracheophytes, sporophytic intercellular spaces in hornworts are initially liquid filled.

CONCLUSIONS

Our experiments demonstrate a lack of physiological regulation of opening and closing of stomata in hornworts compared with tracheophytes, and support accumulating developmental and structural evidence that stomata in hornworts are primarily involved in sporophyte desiccation and spore discharge rather than the regulation of photosynthesis-related gaseous exchange. Our results run counter to the notion of the early acquisition of active control of stomatal movements in bryophytes as proposed from previous experiments on mosses.

摘要

背景与目的

由于藓类植物的气孔出现在孢子体上,因此它们受到的发育和进化限制与维管束植物的叶片气孔不同。目前尚无确凿的实验证据表明角苔气孔对外源刺激的反应。

方法

比较了角苔气孔对脱落酸(ABA)、干旱、黑暗和质壁分离的反应与维管束植物叶片的反应。通过 X 射线微分析分析保卫细胞和相邻细胞中的钾离子浓度,并通过冷冻扫描电子显微镜比较孢子体细胞间隙的发生与维管束植物的发生。

主要结果

角苔气孔的孔径在发育早期就开始打开,此后一直保持打开状态。在角苔中,基于对>9000 个气孔的测量,实验处理仅在干旱和质壁分离后略微减小孔径尺寸,而 ABA 处理和黑暗处理后没有变化。在维管束植物中,所有这些处理都导致气孔完全关闭。在所有处理和所有时间点,角苔保卫细胞和表皮细胞中的钾浓度相似。角苔气孔对干旱和质壁分离的尺寸变化很小,可能是所有表皮和海绵状叶绿体细胞的机械和/或应激反应,影响了保卫细胞。与维管束植物中初生充满气体的对应物不同,角苔的孢子体细胞间隙最初是充满液体的。

结论

与维管束植物相比,我们的实验表明角苔气孔的开放和关闭没有生理调节,这支持了越来越多的发育和结构证据,表明角苔气孔主要参与孢子体的干燥和孢子释放,而不是光合作用相关气体交换的调节。我们的结果与先前关于藓类植物的实验提出的关于藓类植物早期获得主动控制气孔运动的观点相悖。

相似文献

1
Hornwort stomata do not respond actively to exogenous and environmental cues.
Ann Bot. 2018 Jun 28;122(1):45-57. doi: 10.1093/aob/mcy045.
2
3
Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves.
Plant Physiol. 2017 Jun;174(2):788-797. doi: 10.1104/pp.17.00156. Epub 2017 Apr 18.
4
PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis.
Plant J. 2012 Oct;72(2):199-211. doi: 10.1111/j.1365-313X.2012.05058.x. Epub 2012 Aug 3.
8
Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid.
J Plant Physiol. 2016 May 20;195:1-8. doi: 10.1016/j.jplph.2016.03.002. Epub 2016 Mar 8.
9
The Assay of Abscisic Acid-Induced Stomatal Movement in Leaf Senescence.
Methods Mol Biol. 2018;1744:113-118. doi: 10.1007/978-1-4939-7672-0_9.

引用本文的文献

1
Guardians of Water and Gas Exchange: Adaptive Dynamics of Stomatal Development and Patterning.
Plants (Basel). 2025 Aug 3;14(15):2405. doi: 10.3390/plants14152405.
2
In situ cavitation bubble manometry reveals a lack of light-activated guard cell turgor modulation in bryophytes.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2419887122. doi: 10.1073/pnas.2419887122. Epub 2025 Mar 26.
3
Stomata: the holey grail of plant evolution.
Am J Bot. 2021 Mar;108(3):366-371. doi: 10.1002/ajb2.1619. Epub 2021 Mar 9.
4
Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops.
Oecologia. 2021 Dec;197(4):867-883. doi: 10.1007/s00442-021-04857-3. Epub 2021 Jan 30.
5
The hornworts: morphology, evolution and development.
New Phytol. 2021 Jan;229(2):735-754. doi: 10.1111/nph.16874. Epub 2020 Sep 15.
6
Evolution of Abscisic Acid Signaling Module and Its Perception.
Front Plant Sci. 2020 Jul 10;11:934. doi: 10.3389/fpls.2020.00934. eCollection 2020.
7
With Over 60 Independent Losses, Stomata Are Expendable in Mosses.
Front Plant Sci. 2020 May 28;11:567. doi: 10.3389/fpls.2020.00567. eCollection 2020.
8
Evo-physio: on stress responses and the earliest land plants.
J Exp Bot. 2020 Jun 11;71(11):3254-3269. doi: 10.1093/jxb/eraa007.

本文引用的文献

1
The sporophyte-gametophyte junction in the hornwort, Dendroceros tubercularis Hatt (Anthocerotophyta).
New Phytol. 1990 Mar;114(3):497-505. doi: 10.1111/j.1469-8137.1990.tb00417.x.
2
Reading a CO signal from fossil stomata.
New Phytol. 2002 Mar;153(3):387-397. doi: 10.1046/j.0028-646X.2001.00335.x. Epub 2002 Mar 5.
3
Selection pressures on stomatal evolution.
New Phytol. 2002 Mar;153(3):371-386. doi: 10.1046/j.0028-646X.2001.00334.x. Epub 2002 Mar 5.
4
Plant Evolution: Phylogenetic Relationships between the Earliest Land Plants.
Curr Biol. 2018 Mar 5;28(5):R210-R213. doi: 10.1016/j.cub.2018.01.034.
5
The timescale of early land plant evolution.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2274-E2283. doi: 10.1073/pnas.1719588115. Epub 2018 Feb 20.
6
The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte.
Curr Biol. 2018 Mar 5;28(5):733-745.e2. doi: 10.1016/j.cub.2018.01.063. Epub 2018 Feb 15.
7
8
Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns.
Plant Signal Behav. 2017 Jul 3;12(7):e1339858. doi: 10.1080/15592324.2017.1339858. Epub 2017 Jul 18.
9
Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves.
Plant Physiol. 2017 Jun;174(2):788-797. doi: 10.1104/pp.17.00156. Epub 2017 Apr 18.
10
Evolution of the Stomatal Regulation of Plant Water Content.
Plant Physiol. 2017 Jun;174(2):639-649. doi: 10.1104/pp.17.00078. Epub 2017 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验