Suppr超能文献

金鱼藻气孔:与4亿年前无叶化石植物相同的结构与命运。

Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves.

作者信息

Renzaglia Karen S, Villarreal Juan Carlos, Piatkowski Bryan T, Lucas Jessica R, Merced Amelia

机构信息

Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509 (K.S.R., J.R.L.);

Département de Biologie, Université Laval, Quebec, Quebec, Canada G1V 0A6 (J.C.V.);

出版信息

Plant Physiol. 2017 Jun;174(2):788-797. doi: 10.1104/pp.17.00156. Epub 2017 Apr 18.

Abstract

As one of the earliest plant groups to evolve stomata, hornworts are key to understanding the origin and function of stomata. Hornwort stomata are large and scattered on sporangia that grow from their bases and release spores at their tips. We present data from development and immunocytochemistry that identify a role for hornwort stomata that is correlated with sporangial and spore maturation. We measured guard cells across the genera with stomata to assess developmental changes in size and to analyze any correlation with genome size. Stomata form at the base of the sporophyte in the green region, where they develop differential wall thickenings, form a pore, and die. Guard cells collapse inwardly, increase in surface area, and remain perched over a substomatal cavity and network of intercellular spaces that is initially fluid filled. Following pore formation, the sporophyte dries from the outside inwardly and continues to do so after guard cells die and collapse. Spore tetrads develop in spore mother cell walls within a mucilaginous matrix, both of which progressively dry before sporophyte dehiscence. A lack of correlation between guard cell size and DNA content, lack of arabinans in cell walls, and perpetually open pores are consistent with the inactivity of hornwort stomata. Stomata are expendable in hornworts, as they have been lost twice in derived taxa. Guard cells and epidermal cells of hornworts show striking similarities with the earliest plant fossils. Our findings identify an architecture and fate of stomata in hornworts that is ancient and common to plants without sporophytic leaves.

摘要

作为最早进化出气孔的植物类群之一,角苔对于理解气孔的起源和功能至关重要。角苔的气孔很大,分散在从其基部生长并在顶端释放孢子的孢子囊上。我们展示了来自发育和免疫细胞化学的数据,这些数据确定了角苔气孔与孢子囊和孢子成熟相关的作用。我们测量了有气孔的各属植物的保卫细胞,以评估其大小的发育变化,并分析与基因组大小的任何相关性。气孔在绿色区域的孢子体基部形成,在那里它们形成不同的细胞壁加厚,形成一个孔,然后死亡。保卫细胞向内塌陷,表面积增加,并保持位于一个最初充满液体的气孔下腔和细胞间隙网络之上。在孔形成后,孢子体从外向内干燥,在保卫细胞死亡和塌陷后继续如此。四分体孢子在粘液基质中的孢子母细胞壁内发育,在孢子体开裂之前,两者都会逐渐干燥。保卫细胞大小与DNA含量之间缺乏相关性、细胞壁中缺乏阿拉伯聚糖以及气孔永久开放与角苔气孔的不活动一致。气孔在角苔中是可消耗的,因为它们在衍生类群中已经两次消失。角苔的保卫细胞和表皮细胞与最早的植物化石有显著的相似之处。我们的研究结果确定了角苔气孔的结构和命运,这在没有孢子叶的植物中是古老且常见的。

相似文献

引用本文的文献

7
What can hornworts teach us?角苔能教会我们什么?
Front Plant Sci. 2023 Mar 8;14:1108027. doi: 10.3389/fpls.2023.1108027. eCollection 2023.

本文引用的文献

1
Origins and Evolution of Stomatal Development.气孔发育的起源与演化
Plant Physiol. 2017 Jun;174(2):624-638. doi: 10.1104/pp.17.00183. Epub 2017 Mar 29.
2
Evolutionary Conservation of ABA Signaling for Stomatal Closure.气孔关闭的脱落酸信号传导的进化保守性
Plant Physiol. 2017 Jun;174(2):732-747. doi: 10.1104/pp.16.01848. Epub 2017 Feb 23.
5
Abscisic acid controlled sex before transpiration in vascular plants.脱落酸在维管植物蒸腾作用之前控制性别。
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12862-12867. doi: 10.1073/pnas.1606614113. Epub 2016 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验