Institute of Translational Pharmacology, CNR, Rome, Italy.
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
Drug Deliv Transl Res. 2019 Feb;9(1):131-143. doi: 10.1007/s13346-018-0572-y.
Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. Recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Here we study the effect of external physical stimuli-such as millimeter wave radiation-on the induced movement of giant lipid vesicles in suspension containing or not containing iron oxide maghemite (γ-FeO) nanoparticles (MNPs). To increase our understanding of this phenomenon, we used a new microscope image-based analysis to reveal millimeter wave (MMW)-induced effects on the movement of the vesicles. We found that in the lipid vesicles not containing MNPs, an exposure to MMW induced collective reorientation of vesicle motion occurring at the onset of MMW switch "on." Instead, no marked changes in the movements of lipid vesicles containing MNPs were observed at the onset of first MMW switch on, but, importantly, by examining the course followed; once the vesicles are already irradiated, a directional motion of vesicles was induced. The latter vesicles were characterized by a planar motion, absence of gravitational effects, and having trajectories spanning a range of deflection angles narrower than vesicles not containing MNPs. An explanation for this observed delayed response could be attributed to the possible interaction of MNPs with components of lipid membrane that, influencing, e.g., phospholipids density and membrane stiffening, ultimately leads to change vesicle movement.
超顺磁氧化铁纳米颗粒在生物技术和生物医学领域的研究和实际应用中得到了迅速扩展。氧化铁纳米颗粒设计的最新进展和对纳米颗粒膜相互作用的理解,导致了具有可控结构的磁触发、脂质体输送载体的应用。在这里,我们研究了外部物理刺激(如毫米波辐射)对悬浮液中含有或不含有超顺磁氧化铁(γ-FeO)纳米颗粒(MNPs)的巨脂质体诱导运动的影响。为了增加我们对这一现象的理解,我们使用了一种新的基于显微镜图像的分析方法来揭示毫米波(MMW)对囊泡运动的诱导作用。我们发现,在不含有 MNPs 的脂质体中,暴露于 MMW 会诱导囊泡运动的集体重新取向,这种集体重新取向发生在 MMW 开关“开启”的初始阶段。相反,在第一个 MMW 开关开启的初始阶段,含有 MNPs 的脂质体的运动没有明显变化,但是,重要的是,通过检查所遵循的轨迹;一旦囊泡被照射,就会诱导囊泡的定向运动。后者的囊泡具有平面运动、无重力效应的特点,并且轨迹跨越的偏转角范围比不含有 MNPs 的囊泡更窄。这种观察到的延迟响应的解释可能归因于 MNPs 与脂质膜成分的相互作用,这种相互作用影响了例如磷脂的密度和膜的硬度,最终导致囊泡运动的变化。