Reimhult Erik
Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Vienna, Austria.
N Biotechnol. 2015 Dec 25;32(6):665-72. doi: 10.1016/j.nbt.2014.12.002. Epub 2014 Dec 19.
Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. We highlight how recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Nanoscale vesicles actuated by incorporated nanoparticles allow for controlling location and timing of compound release, which enables e.g. use of more potent drugs in drug delivery as the interaction with the right target is ensured. This review emphasizes recent results on the connection between nanoparticle design, vesicle assembly and the stability and release properties of the vesicles. While focused on lipid vesicles magnetically actuated through iron oxide nanoparticles, these insights are of general interest for the design of capsule and cell delivery systems for biotechnology controlled by nanoparticles.
超顺磁性氧化铁纳米颗粒在生物技术和生物医学领域的研究及实际应用中迅速增多。我们着重介绍了氧化铁纳米颗粒设计和对纳米颗粒与膜相互作用的理解方面的最新进展如何促成了具有可控结构的磁触发脂质体递送载体的应用。由掺入的纳米颗粒驱动的纳米级囊泡能够控制化合物释放的位置和时间,例如在药物递送中可使用更有效的药物,因为能确保与正确靶点的相互作用。本综述强调了纳米颗粒设计、囊泡组装与囊泡稳定性及释放特性之间联系的最新研究成果。虽然重点关注通过氧化铁纳米颗粒磁驱动的脂质囊泡,但这些见解对于纳米颗粒控制的生物技术胶囊和细胞递送系统的设计具有普遍意义。