Suppr超能文献

空间再定向的神经认知基础。

The Neurocognitive Basis of Spatial Reorientation.

机构信息

University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.

University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; McGill University, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC, Canada.

出版信息

Curr Biol. 2018 Sep 10;28(17):R1059-R1073. doi: 10.1016/j.cub.2018.04.057.

Abstract

The ability to recover one's bearings when lost is a skill that is fundamental for spatial navigation. We review the cognitive and neural mechanisms that underlie this ability, with the aim of linking together previously disparate findings from animal behavior, human psychology, electrophysiology, and cognitive neuroscience. Behavioral work suggests that reorientation involves two key abilities: first, the recovery of a spatial reference frame (a cognitive map) that is appropriate to the current environment; and second, the determination of one's heading and location relative to that reference frame. Electrophysiological recording studies, primarily in rodents, have revealed potential correlates of these operations in place, grid, border/boundary, and head-direction cells in the hippocampal formation. Cognitive neuroscience studies, primarily in humans, suggest that the perceptual inputs necessary for these operations are processed by neocortical regions such as the retrosplenial complex, occipital place area and parahippocampal place area, with the retrosplenial complex mediating spatial transformations between the local environment and the recovered spatial reference frame, the occipital place area supporting perception of local boundaries, and the parahippocampal place area processing visual information that is essential for identification of the local spatial context. By combining results across these various literatures, we converge on a unified account of reorientation that bridges the cognitive and neural domains.

摘要

当迷失方向时能够重新找回方向感是空间导航的一项基本技能。我们回顾了支持这种能力的认知和神经机制,旨在将动物行为、人类心理学、电生理学和认知神经科学中的先前离散发现联系起来。行为研究表明,重新定向涉及两个关键能力:首先,恢复适合当前环境的空间参照系(认知地图);其次,确定相对于该参照系的朝向和位置。电生理记录研究主要在啮齿动物中,揭示了海马结构中位置、网格、边界/边界和头向细胞中这些操作的潜在关联。认知神经科学研究主要在人类中表明,这些操作所需的感知输入由新皮层区域(如后扣带回复合体、枕叶位置区域和海马旁回位置区域)处理,后扣带回复合体介导局部环境和恢复的空间参照系之间的空间转换,枕叶位置区域支持对局部边界的感知,而海马旁回位置区域则处理对识别局部空间上下文至关重要的视觉信息。通过结合这些不同文献的结果,我们得出了一个统一的重新定向解释,将认知和神经领域联系起来。

相似文献

1
The Neurocognitive Basis of Spatial Reorientation.
Curr Biol. 2018 Sep 10;28(17):R1059-R1073. doi: 10.1016/j.cub.2018.04.057.
2
Environmental Geometry Aligns the Hippocampal Map during Spatial Reorientation.
Curr Biol. 2017 Feb 6;27(3):309-317. doi: 10.1016/j.cub.2016.11.046. Epub 2017 Jan 12.
4
Representation of human spatial navigation responding to input spatial information and output navigational strategies: An ALE meta-analysis.
Neurosci Biobehav Rev. 2019 Aug;103:60-72. doi: 10.1016/j.neubiorev.2019.06.012. Epub 2019 Jun 12.
5
Framing of grid cells within and beyond navigation boundaries.
Elife. 2017 Jan 13;6:e21354. doi: 10.7554/eLife.21354.
6
The cognitive map in humans: spatial navigation and beyond.
Nat Neurosci. 2017 Oct 26;20(11):1504-1513. doi: 10.1038/nn.4656.
7
Common Neural Representations for Visually Guided Reorientation and Spatial Imagery.
Cereb Cortex. 2017 Feb 1;27(2):1457-1471. doi: 10.1093/cercor/bhv343.
8
Place recognition and heading retrieval are mediated by dissociable cognitive systems in mice.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6503-8. doi: 10.1073/pnas.1424194112. Epub 2015 May 4.
9
What determines our navigational abilities?
Trends Cogn Sci. 2010 Mar;14(3):138-46. doi: 10.1016/j.tics.2010.01.001. Epub 2010 Feb 6.
10
Vestibular contribution to spatial orientation and navigation.
Curr Opin Neurol. 2024 Feb 1;37(1):52-58. doi: 10.1097/WCO.0000000000001230. Epub 2023 Nov 27.

引用本文的文献

1
Disentangling reference frames in the neural compass.
Imaging Neurosci (Camb). 2024 May 1;2. doi: 10.1162/imag_a_00149. eCollection 2024.
3
Flexible hippocampal representation of abstract boundaries supports memory-guided choice.
Nat Commun. 2025 Mar 13;16(1):2377. doi: 10.1038/s41467-025-57644-6.
4
5
Learning to use landmarks for navigation amplifies their representation in retrosplenial cortex.
bioRxiv. 2024 Aug 19:2024.08.18.607457. doi: 10.1101/2024.08.18.607457.
7
The neuroscience of turning heads.
Nat Hum Behav. 2024 Jul;8(7):1243-1244. doi: 10.1038/s41562-024-01920-w.
8
9
Altered grid-like coding in early blind people.
Nat Commun. 2024 Apr 24;15(1):3476. doi: 10.1038/s41467-024-47747-x.
10
Common and specific activations supporting optic flow processing and navigation as revealed by a meta-analysis of neuroimaging studies.
Brain Struct Funct. 2024 Jun;229(5):1021-1045. doi: 10.1007/s00429-024-02790-8. Epub 2024 Apr 9.

本文引用的文献

1
Computational mechanisms underlying cortical responses to the affordance properties of visual scenes.
PLoS Comput Biol. 2018 Apr 23;14(4):e1006111. doi: 10.1371/journal.pcbi.1006111. eCollection 2018 Apr.
2
Hexadirectional coding of visual space in human entorhinal cortex.
Nat Neurosci. 2018 Feb;21(2):188-190. doi: 10.1038/s41593-017-0050-8. Epub 2018 Jan 8.
3
Human entorhinal cortex represents visual space using a boundary-anchored grid.
Nat Neurosci. 2018 Feb;21(2):191-194. doi: 10.1038/s41593-017-0049-1. Epub 2018 Jan 8.
4
Consistency of Spatial Representations in Rat Entorhinal Cortex Predicts Performance in a Reorientation Task.
Curr Biol. 2017 Dec 4;27(23):3658-3665.e4. doi: 10.1016/j.cub.2017.10.015. Epub 2017 Nov 16.
5
The cognitive map in humans: spatial navigation and beyond.
Nat Neurosci. 2017 Oct 26;20(11):1504-1513. doi: 10.1038/nn.4656.
6
Sparse orthogonal population representation of spatial context in the retrosplenial cortex.
Nat Commun. 2017 Aug 15;8(1):243. doi: 10.1038/s41467-017-00180-9.
7
Retinotopic Organization of Scene Areas in Macaque Inferior Temporal Cortex.
J Neurosci. 2017 Aug 2;37(31):7373-7389. doi: 10.1523/JNEUROSCI.0569-17.2017. Epub 2017 Jul 3.
8
Wormholes in virtual space: From cognitive maps to cognitive graphs.
Cognition. 2017 Sep;166:152-163. doi: 10.1016/j.cognition.2017.05.020. Epub 2017 May 31.
9
Spatially Periodic Activation Patterns of Retrosplenial Cortex Encode Route Sub-spaces and Distance Traveled.
Curr Biol. 2017 Jun 5;27(11):1551-1560.e4. doi: 10.1016/j.cub.2017.04.036. Epub 2017 May 18.
10
Coding of navigational affordances in the human visual system.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4793-4798. doi: 10.1073/pnas.1618228114. Epub 2017 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验