University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; McGill University, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC, Canada.
Curr Biol. 2018 Sep 10;28(17):R1059-R1073. doi: 10.1016/j.cub.2018.04.057.
The ability to recover one's bearings when lost is a skill that is fundamental for spatial navigation. We review the cognitive and neural mechanisms that underlie this ability, with the aim of linking together previously disparate findings from animal behavior, human psychology, electrophysiology, and cognitive neuroscience. Behavioral work suggests that reorientation involves two key abilities: first, the recovery of a spatial reference frame (a cognitive map) that is appropriate to the current environment; and second, the determination of one's heading and location relative to that reference frame. Electrophysiological recording studies, primarily in rodents, have revealed potential correlates of these operations in place, grid, border/boundary, and head-direction cells in the hippocampal formation. Cognitive neuroscience studies, primarily in humans, suggest that the perceptual inputs necessary for these operations are processed by neocortical regions such as the retrosplenial complex, occipital place area and parahippocampal place area, with the retrosplenial complex mediating spatial transformations between the local environment and the recovered spatial reference frame, the occipital place area supporting perception of local boundaries, and the parahippocampal place area processing visual information that is essential for identification of the local spatial context. By combining results across these various literatures, we converge on a unified account of reorientation that bridges the cognitive and neural domains.
当迷失方向时能够重新找回方向感是空间导航的一项基本技能。我们回顾了支持这种能力的认知和神经机制,旨在将动物行为、人类心理学、电生理学和认知神经科学中的先前离散发现联系起来。行为研究表明,重新定向涉及两个关键能力:首先,恢复适合当前环境的空间参照系(认知地图);其次,确定相对于该参照系的朝向和位置。电生理记录研究主要在啮齿动物中,揭示了海马结构中位置、网格、边界/边界和头向细胞中这些操作的潜在关联。认知神经科学研究主要在人类中表明,这些操作所需的感知输入由新皮层区域(如后扣带回复合体、枕叶位置区域和海马旁回位置区域)处理,后扣带回复合体介导局部环境和恢复的空间参照系之间的空间转换,枕叶位置区域支持对局部边界的感知,而海马旁回位置区域则处理对识别局部空间上下文至关重要的视觉信息。通过结合这些不同文献的结果,我们得出了一个统一的重新定向解释,将认知和神经领域联系起来。