State Key Laboratory of Powder Metallurgy , Central South University , Changsha 410083 , China.
Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education) , Hainan University , Haikou 570228 , China.
ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34254-34264. doi: 10.1021/acsami.8b11416. Epub 2018 Sep 25.
A hybrid supercapacitor system was designed with ternary Ni-Co sulfides (CoNiS) as cathode materials and Fe-based composites [carbon nanotubes (CNTs)@FeO@C] as anode materials to achieve excellent overall electrochemical performance with high energy and power density as well as long lifespan. Here, hierarchical CoNiS nanotubes were synthesized by a solvothermal route followed by sulfidation reaction for the first time, in which nanotubes were composed of interconnected ultrathin nanosheets. Consequently, such a unique nanosheet-built nanoarchitecture enables the CoNiS cathode with multidimensional synergistic effect from one-dimensional nanotubes, two-dimensional nanosheets, and three-dimensional frameworks. Profiting from its structural merits, the as-prepared CoNiS nanotubes deliver a high capacitance of 2552 F g at 1 A g with a high rate capacity of 81% at 25 A g. In addition, the CNTs@FeO@C anode materials-incorporating carbon-encapsulated ultrafine FeO nanoparticles into CNT matrices-were achieved by atomic layer deposition and acetylene thermal decomposition, which realize excellent electrochemical properties (678 F g at 1 A g and capacity retention of 82% at 25 A g) that matched well with CoNiS cathode materials. With the well-designed nanostructure and matching of materials and properties, the corresponding aqueous hybrid device exhibits a wide output voltage window of 0-1.75 V with a maximum energy density of 90.5 W h kg at a power density of 1.84 kW kg. Meanwhile, a high energy density of 73.1 W h kg can be retained at an ultrahigh power density of 26.9 kW kg. Moreover, the hybrid device has a stable cycling ability with 82.1% retention over 5000 cycles. This coordinative design strategy integrating the cathode and anode electrodes developed in this work provides a novel way to manufacture next-generation energy-storage device with high performance and safety.
设计了一种混合超级电容器系统,以三元 Ni-Co 硫化物 (CoNiS) 作为阴极材料,以 Fe 基复合材料[碳纳米管 (CNTs)@FeO@C]作为阳极材料,以实现具有高能量和功率密度以及长寿命的优异整体电化学性能。在这里,分层 CoNiS 纳米管首次通过溶剂热路线和硫化反应合成,其中纳米管由相互连接的超薄纳米片组成。因此,这种独特的纳米片构建的纳米结构使 CoNiS 阴极具有来自一维纳米管、二维纳米片和三维框架的多维协同效应。得益于其结构优势,所制备的 CoNiS 纳米管在 1 A g 时具有 2552 F g 的高电容,在 25 A g 时具有 81%的高倍率容量。此外,通过原子层沉积和乙炔热分解将 CNTs@FeO@C 阳极材料-将碳封装的超细 FeO 纳米颗粒嵌入 CNT 基体中-实现了优异的电化学性能(在 1 A g 时为 678 F g,在 25 A g 时容量保持率为 82%),与 CoNiS 阴极材料匹配良好。通过精心设计的纳米结构以及材料和性能的匹配,相应的水系混合器件具有 0-1.75 V 的宽输出电压窗口,在 1.84 kW kg 的功率密度下具有 90.5 W h kg 的最大能量密度。同时,在 26.9 kW kg 的超高功率密度下可以保留 73.1 W h kg 的高能量密度。此外,该混合器件具有稳定的循环能力,在 5000 次循环后保留率为 82.1%。这项协同设计策略将阴极和阳极电极集成在一起,为制造具有高性能和安全性的下一代储能器件提供了一种新方法。