Shenzhen Key Laboratory for Advanced Materials , Harbin Institute of Technology, Shenzhen , Shenzhen 518055 , China.
Centre for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore.
ACS Appl Mater Interfaces. 2019 Mar 13;11(10):9984-9993. doi: 10.1021/acsami.8b21803. Epub 2019 Mar 1.
Self-assembled Ni(OH) nanosheet-decorated hierarchical flower-like MnCoO nanoneedles were synthesized via a cost-effective and facile hydrothermal strategy, aiming to realize a high-capacity advanced electrode of a battery-supercapacitor hybrid (BSH) device. It is demonstrated that the as-synthesized hierarchical flower-like MnCoO@Ni(OH)-nanosheet electrode exhibits a high specific capacity of 318 mAh g at a current density of 3 A g and still maintains a capacity of 263.5 mAh g at a higher current density of 20 A g, with an extremely long cycle lifespan of 87.7% capacity retention after 5000 cycles. Moreover, using the unique core-shell structure as the cathode and hollow FeO nanoparticles/reduced graphene oxide as the anode, the BSH device delivers a high energy density of 56.53 Wh kg when the power density reaches 1.9 kW kg, and there is an extraordinarily good cycling stability with the capacity retention rate of 90.4% after 3000 cycles. It is believed that the superior properties originate from desirable core-shell structures alleviating the impact of volume changes as well as the existence of two-dimensional Ni(OH) nanosheets with more active sites, thereby improving the cycle stability and achieving ultrahigh capacity. These results will provide more access to the rational material design of diverse nanostructures toward high-performance energy storage devices.
通过一种经济高效且简便的水热策略,成功合成了自组装的 Ni(OH)纳米片修饰的分级花状 MnCoO 纳米针,旨在实现电池-超级电容器混合 (BSH) 器件的高容量先进电极。研究表明,所合成的分级花状 MnCoO@Ni(OH)-纳米片电极在 3 A g 的电流密度下具有 318 mAh g 的高比容量,在更高的 20 A g 电流密度下仍保持 263.5 mAh g 的容量,具有超过 5000 次循环后的 87.7%容量保持率的超长循环寿命。此外,利用独特的核壳结构作为阴极,空心 FeO 纳米颗粒/还原氧化石墨烯作为阳极,BSH 器件在功率密度达到 1.9 kW kg 时提供了 56.53 Wh kg 的高能量密度,并且在 3000 次循环后具有出色的循环稳定性,容量保持率为 90.4%。相信优越的性能源于理想的核壳结构减轻了体积变化的影响,以及二维 Ni(OH)纳米片的存在具有更多的活性位点,从而提高了循环稳定性并实现了超高容量。这些结果将为合理设计具有高性能储能器件的各种纳米结构提供更多途径。