Suppr超能文献

MultiWaver 2.0:建模离散和连续基因流,以重建复杂的群体混合。

MultiWaver 2.0: modeling discrete and continuous gene flow to reconstruct complex population admixtures.

机构信息

Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing, 100044, China.

Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.

出版信息

Eur J Hum Genet. 2019 Jan;27(1):133-139. doi: 10.1038/s41431-018-0259-3. Epub 2018 Sep 11.

Abstract

Our goal in developing the MultiWaver software series was to be able to infer population admixture history under various complex scenarios. The earlier version of MultiWaver considered only discrete admixture models. Here, we report a newly developed version, MultiWaver 2.0, that implements a more flexible framework and is capable of inferring multiple-wave admixture histories under both discrete and continuous admixture models. MultiWaver 2.0 can automatically select an optimal admixture model based on the length distribution of ancestral tracks of chromosomes, and the program can estimate the corresponding parameters under the selected model. Specifically, for discrete admixture models, we used a likelihood ratio test (LRT) to determine the optimal discrete model and an expectation-maximization algorithm to estimate the parameters. In addition, according to the principles of the Bayesian Information Criterion (BIC), we compared the optimal discrete model with several continuous admixture models. In MultiWaver 2.0, we also applied a bootstrapping technique to provide levels of support for the chosen model and the confidence interval (CI) of the estimations of admixture time. Simulation studies validated the reliability and effectiveness of our method. Finally, the program performed well when applied to real datasets of typical admixed populations, such as African Americans, Uyghurs, and Hazaras.

摘要

我们开发 MultiWaver 软件系列的目标是能够在各种复杂情况下推断群体混合历史。MultiWaver 的早期版本仅考虑离散混合模型。在这里,我们报告了一个新开发的版本,MultiWaver 2.0,它实现了一个更灵活的框架,能够在离散和连续混合模型下推断多次混合历史。MultiWaver 2.0 可以根据染色体祖先轨迹的长度分布自动选择最佳混合模型,并且程序可以在选定的模型下估计相应的参数。具体来说,对于离散混合模型,我们使用似然比检验(LRT)来确定最佳离散模型,并使用期望最大化算法来估计参数。此外,根据贝叶斯信息准则(BIC)的原则,我们将最佳离散模型与几种连续混合模型进行了比较。在 MultiWaver 2.0 中,我们还应用了自举技术,为所选模型和混合时间估计的置信区间(CI)提供支持水平。模拟研究验证了我们方法的可靠性和有效性。最后,该程序在应用于典型混合人群(如非裔美国人、维吾尔族人和哈扎拉人)的真实数据集时表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验