Suppr超能文献

内源性逆转录病毒在奇蹄目基因组中的分布、多样性和进化。

Distribution, Diversity, and Evolution of Endogenous Retroviruses in Perissodactyl Genomes.

机构信息

MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.

MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom

出版信息

J Virol. 2018 Nov 12;92(23). doi: 10.1128/JVI.00927-18. Print 2018 Dec 1.

Abstract

The evolution of mammalian genomes has been shaped by interactions with endogenous retroviruses (ERVs). In this study, we investigated the distribution and diversity of ERVs in the mammalian order , with a view to understanding their impact on the evolution of modern equids (family ). We characterize the major ERV lineages in the horse genome in terms of their genomic distribution, ancestral genome organization, and time of activity. Our results show that subsequent to their ancestral divergence from rhinoceroses and tapirs, equids acquired four novel ERV lineages. We show that two of these ERV lineages proliferated extensively in the lineage leading to modern horses, and one contains loci that are actively transcribed in specific tissues. In addition, we show that the white rhinoceros has resisted germ line colonization by retroviruses for more than 54 million years-longer than any other extant mammalian species. The map of equine ERVs that we provide here will be of great utility to future studies aiming to investigate the potential functional roles of equine ERVs and their impact on equine evolution. ERVs in the host genome are highly informative about the long-term interactions of retroviruses and hosts. They are also interesting because they have influenced the evolution of mammalian genomes in various ways. In this study, we derive a calibrated timeline describing the process through which ERV diversity has been generated in the equine germ line. We determined the distribution and diversity of perissodactyl ERV lineages and inferred their retrotranspositional activity during evolution, thereby gaining insight into the long-term coevolutionary history of retroviruses and mammals. Our study provides a platform for future investigations to identify equine ERV loci involved in physiological processes and/or pathological conditions.

摘要

哺乳动物基因组的进化受到内源性逆转录病毒(ERVs)的影响。在这项研究中,我们研究了哺乳动物目(Order )中 ERV 的分布和多样性,旨在了解它们对现代马科动物(Family )进化的影响。我们从基因组分布、祖先基因组组织和活跃时间等方面对马基因组中的主要 ERV 谱系进行了特征描述。研究结果表明,马科动物在与犀牛和貘分化后,获得了 4 种新的 ERV 谱系。我们发现,其中两种 ERV 谱系在现代马的进化过程中广泛增殖,一种包含在特定组织中活跃转录的基因座。此外,我们还发现,白犀牛已经抵抗了 5400 多万年的生殖系病毒感染,这比任何其他现存的哺乳动物物种都要长。我们提供的马 ERV 图谱将对未来研究大有裨益,这些研究旨在调查马 ERV 的潜在功能作用及其对马科动物进化的影响。宿主基因组中的 ERV 非常有助于了解逆转录病毒和宿主之间的长期相互作用。它们也很有趣,因为它们以各种方式影响了哺乳动物基因组的进化。在这项研究中,我们构建了一个校准的时间线,描述了 ERV 多样性在马生殖系中产生的过程。我们确定了奇蹄目 ERV 谱系的分布和多样性,并推断了它们在进化过程中的 retrotranspositional 活性,从而深入了解了逆转录病毒和哺乳动物的长期协同进化历史。我们的研究为未来的研究提供了一个平台,以识别参与生理过程和/或病理状况的马 ERV 基因座。

相似文献

1
Distribution, Diversity, and Evolution of Endogenous Retroviruses in Perissodactyl Genomes.
J Virol. 2018 Nov 12;92(23). doi: 10.1128/JVI.00927-18. Print 2018 Dec 1.
2
Evolutionarily Young African Rhinoceros Gammaretroviruses.
J Virol. 2023 Apr 27;97(4):e0193222. doi: 10.1128/jvi.01932-22. Epub 2023 Apr 6.
3
Identification and characterization of diverse groups of endogenous retroviruses in felids.
Retrovirology. 2015 Mar 15;12:26. doi: 10.1186/s12977-015-0152-x.
6
Extensive retroviral diversity in shark.
Retrovirology. 2015 Apr 28;12:34. doi: 10.1186/s12977-015-0158-4.
8
Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses.
PLoS Pathog. 2018 Jun 14;14(6):e1007072. doi: 10.1371/journal.ppat.1007072. eCollection 2018 Jun.
9
Tracking the Fate of Endogenous Retrovirus Segregation in Wild and Domestic Cats.
J Virol. 2019 Nov 26;93(24). doi: 10.1128/JVI.01324-19. Print 2019 Dec 15.
10
Expansion of a retrovirus lineage in the koala genome.
Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2201844119. doi: 10.1073/pnas.2201844119. Epub 2022 Jun 13.

引用本文的文献

3
Intact, recombinant, and spliced forms of endogenous mouse mammary tumor viruses in inbred and wild mice.
J Virol. 2025 Apr 15;99(4):e0007925. doi: 10.1128/jvi.00079-25. Epub 2025 Mar 13.
6
Evolutionary conservation of an ancient retroviral gene in Artiodactyla.
J Virol. 2023 Sep 28;97(9):e0053523. doi: 10.1128/jvi.00535-23. Epub 2023 Sep 5.
7
Differential Expression Pattern of Retroviral Envelope Gene in the Equine Placenta.
Front Vet Sci. 2021 Jul 9;8:693416. doi: 10.3389/fvets.2021.693416. eCollection 2021.

本文引用的文献

3
Identification of long non-coding RNA in the horse transcriptome.
BMC Genomics. 2017 Jul 4;18(1):511. doi: 10.1186/s12864-017-3884-2.
4
THE ADAPTIVE RADIATION OF THE PHENACODONTID CONDYLARTHS AND THE ORIGIN OF THE PERISSODACTYLA.
Evolution. 1966 Sep;20(3):408-417. doi: 10.1111/j.1558-5646.1966.tb03375.x.
5
ModelFinder: fast model selection for accurate phylogenetic estimates.
Nat Methods. 2017 Jun;14(6):587-589. doi: 10.1038/nmeth.4285. Epub 2017 May 8.
7
TimeTree: A Resource for Timelines, Timetrees, and Divergence Times.
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819. doi: 10.1093/molbev/msx116.
8
KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks.
Nature. 2017 Mar 23;543(7646):550-554. doi: 10.1038/nature21683. Epub 2017 Mar 8.
9
Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusion and Muscle Sexual Dimorphism in Mice.
PLoS Genet. 2016 Sep 2;12(9):e1006289. doi: 10.1371/journal.pgen.1006289. eCollection 2016 Sep.
10
Time-Dependent Rate Phenomenon in Viruses.
J Virol. 2016 Jul 27;90(16):7184-95. doi: 10.1128/JVI.00593-16. Print 2016 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验