1 Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.
2 Department of Medical Statistics, Leiden University Medical Center, Leiden, Netherlands.
Int J Stroke. 2019 Jul;14(5):530-539. doi: 10.1177/1747493018801225. Epub 2018 Sep 13.
A clinical large anterior vessel occlusion (LAVO)-prediction scale could reduce treatment delays by allocating intra-arterial thrombectomy (IAT)-eligible patients directly to a comprehensive stroke center.
To subtract, validate and compare existing LAVO-prediction scales, and develop a straightforward decision support tool to assess IAT-eligibility.
We performed a systematic literature search to identify LAVO-prediction scales. Performance was compared in a prospective, multicenter validation cohort of the Dutch acute Stroke study (DUST) by calculating area under the receiver operating curves (AUROC). With group lasso regression analysis, we constructed a prediction model, incorporating patient characteristics next to National Institutes of Health Stroke Scale (NIHSS) items. Finally, we developed a decision tree algorithm based on dichotomized NIHSS items.
We identified seven LAVO-prediction scales. From DUST, 1316 patients (35.8% LAVO-rate) from 14 centers were available for validation. FAST-ED and RACE had the highest AUROC (both >0.81, < 0.01 for comparison with other scales). Group lasso analysis revealed a LAVO-prediction model containing seven NIHSS items (AUROC 0.84). With the GACE (Gaze, facial Asymmetry, level of Consciousness, Extinction/inattention) decision tree, LAVO is predicted (AUROC 0.76) for 61% of patients with assessment of only two dichotomized NIHSS items, and for all patients with four items.
External validation of seven LAVO-prediction scales showed AUROCs between 0.75 and 0.83. Most scales, however, appear too complex for Emergency Medical Services use with prehospital validation generally lacking. GACE is the first LAVO-prediction scale using a simple decision tree as such increasing feasibility, while maintaining high accuracy. Prehospital prospective validation is planned.
临床大血管前部闭塞(LAVO)预测量表可以通过直接将适合接受动脉内血栓切除术(IAT)的患者分配到综合卒中中心来减少治疗延误。
减去、验证和比较现有的 LAVO 预测量表,并开发一种简单的决策支持工具来评估 IAT 的资格。
我们进行了系统的文献检索,以确定 LAVO 预测量表。通过计算接收者操作特征曲线(AUROC)下的面积,在荷兰急性卒中研究(DUST)的前瞻性、多中心验证队列中比较了性能。通过组套索回归分析,我们构建了一个预测模型,除了 NIHSS 项目外,还纳入了患者特征。最后,我们基于二分 NIHSS 项目开发了一个决策树算法。
我们确定了七种 LAVO 预测量表。从 DUST 中,有 1316 名患者(35.8%的 LAVO 率)来自 14 个中心可供验证。FAST-ED 和 RACE 的 AUROC 最高(均>0.81,与其他量表相比,差异有统计学意义)。组套索分析显示,包含七个 NIHSS 项目的 LAVO 预测模型(AUROC 0.84)。使用 GACE(凝视、面部不对称、意识水平、消失/注意力不集中)决策树,仅评估两个二分 NIHSS 项目即可预测 LAVO(AUROC 0.76),对于 61%的患者,对于所有患者,使用四个项目即可预测。
七种 LAVO 预测量表的外部验证显示 AUROCs 在 0.75 到 0.83 之间。然而,大多数量表看起来过于复杂,不适合与院前验证一起用于紧急医疗服务,而院前验证通常缺乏。GACE 是第一个使用简单决策树的 LAVO 预测量表,因此增加了可行性,同时保持了高精度。计划进行院前前瞻性验证。