Teplenin Alexander S, Dierckx Hans, de Vries Antoine A F, Pijnappels Daniël A, Panfilov Alexander V
Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, the Netherlands.
Department of Physics and Astronomy, Ghent University, Ghent, Belgium.
Phys Rev X. 2018 Jun 26;8(2):021077. doi: 10.1103/PhysRevX.8.021077.
The generation of abnormal excitations in pathological regions of the heart is a main trigger for lethal cardiac arrhythmias. Such abnormal excitations, also called ectopic activity, often arise from areas with local tissue heterogeneity or damage accompanied by localized depolarization. Finding the conditions that lead to ectopy is important to understand the basic biophysical principles underlying arrhythmia initiation and might further refine clinical procedures. In this study, we are the first to address the question of how geometry of the abnormal region affects the onset of ectopy using a combination of experimental, , and theoretical approaches. We paradoxically find that, for any studied geometry of the depolarized region in optogenetically modified monolayers of cardiac cells, primary ectopic excitation originates at areas of maximal curvature of the boundary, where the stimulating electrotonic currents are minimal. It contradicts the standard critical nucleation theory applied to nonlinear waves in reaction-diffusion systems, where a higher stimulus is expected to produce excitation more easily. Our studies reveal that the nonconventional ectopic activity is caused by an oscillatory instability at the boundary of the damaged region, the occurrence of which depends on the curvature of that boundary. The onset of this instability is confirmed using the Schrödinger equation methodology proposed by Rinzel and Keener [SIAM J. Appl. Math. 43, 907 (1983)]. Overall, we show distinctively novel insight into how the geometry of a heterogeneous cardiac region determines ectopic activity, which can be used in the future to predict the conditions that can trigger cardiac arrhythmias.
心脏病理区域异常兴奋的产生是致命性心律失常的主要触发因素。这种异常兴奋,也称为异位活动,通常源于具有局部组织异质性或伴有局部去极化损伤的区域。找出导致异位活动的条件对于理解心律失常起始背后的基本生物物理原理很重要,并且可能进一步完善临床程序。在本研究中,我们首次使用实验、 (此处原文缺失部分内容)和理论方法相结合的方式,来解决异常区域的几何形状如何影响异位活动起始的问题。我们意外地发现,对于光遗传学修饰的心肌细胞单层中任何研究的去极化区域几何形状,原发性异位兴奋都起源于边界最大曲率处,而此处刺激电紧张电流最小。这与应用于反应扩散系统中非线性波的标准临界成核理论相矛盾,在该理论中,更高的刺激预计更容易产生兴奋。我们的研究表明,这种非常规的异位活动是由受损区域边界处的振荡不稳定性引起的,其发生取决于该边界的曲率。使用Rinzel和Keener [《工业与应用数学学会应用数学杂志》43, 907 (1�83)] 提出的薛定谔方程方法证实了这种不稳定性的起始。总体而言,我们对异质性心脏区域的几何形状如何决定异位活动展现出了独特的新见解,这在未来可用于预测可能引发心律失常的条件。