Suppr超能文献

加工形容词屈折变化过程中的信息和学习。

Information and learning in processing adjective inflection.

机构信息

Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia.

Department of Journalism Studies, University of Sheffield, Sheffield, United Kingdom.

出版信息

Cortex. 2019 Jul;116:209-227. doi: 10.1016/j.cortex.2018.07.020. Epub 2018 Aug 6.

Abstract

We investigated the processing of inflected Serbian adjective forms to bring together quantitative linguistic measures from two frameworks - information theory and discrimination learning. From each framework we derived several quantitative descriptions of an inflectional morphological system and fitted two separate regression models to the processing latencies that were elicited by inflected adjectival forms presented in a visual lexical decision task. The model, which was based on lexical distributional and information theory revealed a dynamic interplay of information. The information was sensitive to syntagmatic and paradigmatic dimensions of variation; the paradigmatic information (formalized as respective relative entropies) was also modulated by lemma frequency. The discrimination learning based model revealed an equally complex pattern, involving several learning-based variables. The two models revealed strikingly similar patterns of results, as confirmed by the very high proportion of shared variance in model predictions (85.83%). Our findings add to the body of research demonstrating that complex morphological phenomena can arise as a consequence of the basic principles of discrimination learning. Learning discriminatively about inflectional paradigms and classes, and about their contextual or syntagmatic embedding, sheds light on human language-processing efficiency and on the fascinating complexity of naturally emerged language systems.

摘要

我们研究了动词词形变化的加工过程,将来自两个框架的定量语言学测量方法——信息论和辨别学习——结合起来。从每个框架中,我们得出了一些对屈折词形态系统的定量描述,并将两个独立的回归模型拟合到由视觉词汇判断任务中呈现的屈折形容词形式引起的加工潜伏期上。基于词汇分布和信息论的模型揭示了信息的动态相互作用。信息对组合和词形变化的维度变化敏感;词形变化的信息(形式化为各自的相对熵)也受到词干频率的调节。基于辨别学习的模型揭示了一个同样复杂的模式,涉及到几个基于学习的变量。这两个模型揭示了非常相似的结果模式,这一点得到了模型预测中共享方差的比例非常高(85.83%)的证实。我们的发现增加了研究的数量,证明了复杂的词法现象可以作为辨别学习基本原理的结果出现。对词形变化的词形变化和类别进行有辨别力的学习,以及对其上下文或组合的学习,揭示了人类语言处理效率的本质,以及自然出现的语言系统的迷人复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验