Suppr超能文献

婴儿早期言语学习中的预测与错误:言语习得模型。

Prediction and error in early infant speech learning: A speech acquisition model.

机构信息

Quantitative Linguistics Group, Eberhard Karls University of Tübingen, Germany.

出版信息

Cognition. 2021 Jul;212:104697. doi: 10.1016/j.cognition.2021.104697. Epub 2021 Mar 31.

Abstract

In the last two decades, statistical clustering models have emerged as a dominant model of how infants learn the sounds of their language. However, recent empirical and computational evidence suggests that purely statistical clustering methods may not be sufficient to explain speech sound acquisition. To model early development of speech perception, the present study used a two-layer network trained with Rescorla-Wagner learning equations, an implementation of discriminative, error-driven learning. The model contained no a priori linguistic units, such as phonemes or phonetic features. Instead, expectations about the upcoming acoustic speech signal were learned from the surrounding speech signal, with spectral components extracted from an audio recording of child-directed speech as both inputs and outputs of the model. To evaluate model performance, we simulated infant responses in the high-amplitude sucking paradigm using vowel and fricative pairs and continua. The simulations were able to discriminate vowel and consonant pairs and predicted the infant speech perception data. The model also showed the greatest amount of discrimination in the expected spectral frequencies. These results suggest that discriminative error-driven learning may provide a viable approach to modelling early infant speech sound acquisition.

摘要

在过去的二十年中,统计聚类模型已经成为一种主导的模型,用于解释婴儿如何学习他们语言的声音。然而,最近的实证和计算证据表明,纯粹的统计聚类方法可能不足以解释语音获取。为了模拟语音感知的早期发展,本研究使用了一个两层网络,该网络使用 Rescorla-Wagner 学习方程进行训练,这是一种有区别的、错误驱动的学习实现。该模型没有先验的语言单位,如音位或语音特征。相反,对即将到来的声学语音信号的期望是从周围的语音信号中学习到的,从儿童导向语音的音频记录中提取频谱分量作为模型的输入和输出。为了评估模型的性能,我们使用元音和摩擦音对以及连续体模拟了高振幅吸吮范式中的婴儿反应。模拟能够区分元音和辅音对,并预测婴儿的语音感知数据。该模型在预期的频谱频率中也表现出最大的区分度。这些结果表明,有区别的错误驱动学习可能为早期婴儿语音获取建模提供一种可行的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f69/8173624/b6c564b1ec22/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验