水中苯-1,3,5-三甲酰胺超分子组装体中的多态性:结构与动力学之间的微妙权衡
Polymorphism in Benzene-1,3,5-tricarboxamide Supramolecular Assemblies in Water: A Subtle Trade-off between Structure and Dynamics.
作者信息
Matsumoto Nicholas M, Lafleur René P M, Lou Xianwen, Shih Kuo-Chih, Wijnands Sjors P W, Guibert Clément, van Rosendaal Johannes W A M, Voets Ilja K, Palmans Anja R A, Lin Yao, Meijer E W
机构信息
Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , the Netherlands.
Department of Chemistry and Polymer Program at the Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States.
出版信息
J Am Chem Soc. 2018 Oct 17;140(41):13308-13316. doi: 10.1021/jacs.8b07697. Epub 2018 Oct 8.
In biology, polymorphism is a well-known phenomenon by which a discrete biomacromolecule can adopt multiple specific conformations in response to its environment. The controlled incorporation of polymorphism into noncovalent aqueous assemblies of synthetic small molecules is an important step toward the development of bioinspired responsive materials. Herein, we report on a family of carboxylic acid functionalized water-soluble benzene-1,3,5-tricarboxamides (BTAs) that self-assemble in water to form one-dimensional fibers, membranes, and hollow nanotubes. Interestingly, one of the BTAs with the optimized position of the carboxylic group in the hydrophobic domain yields nanotubes that undergo reversible temperature-dependent dynamic reorganizations. SAXS and Cryo-TEM data show the formation of elongated, well-ordered nanotubes at elevated temperatures. At these temperatures, increased dynamics, as measured by hydrogen-deuterium exchange, provide enough flexibility to the system to form well-defined nanotube structures with apparently defect-free tube walls. Without this flexibility, the assemblies are frozen into a variety of structures that are very similar at the supramolecular level, but less defined at the mesoscopic level.
在生物学中,多态性是一种众所周知的现象,通过这种现象,离散的生物大分子可以根据其环境采用多种特定构象。将多态性可控地引入合成小分子的非共价水性组装体中,是朝着开发受生物启发的响应材料迈出的重要一步。在此,我们报道了一类羧酸功能化的水溶性苯-1,3,5-三甲酰胺(BTAs),它们在水中自组装形成一维纤维、膜和中空纳米管。有趣的是,其中一种羧酸基团在疏水区域具有优化位置的BTA产生的纳米管会发生可逆的温度依赖性动态重组。小角X射线散射(SAXS)和冷冻透射电子显微镜(Cryo-TEM)数据表明,在升高的温度下会形成细长、有序的纳米管。在这些温度下,通过氢-氘交换测量的动力学增加,为系统提供了足够的灵活性,以形成具有明显无缺陷管壁的明确纳米管结构。没有这种灵活性,组装体就会冻结成各种在超分子水平上非常相似但在介观水平上定义不太明确的结构。