Suppr超能文献

探索和控制碳水化合物和蛋白质的超分子组装中的多态性。

Exploring and Controlling the Polymorphism in Supramolecular Assemblies of Carbohydrates and Proteins.

机构信息

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China.

出版信息

Acc Chem Res. 2020 Apr 21;53(4):740-751. doi: 10.1021/acs.accounts.9b00552. Epub 2020 Mar 16.

Abstract

In biology, polymorphism is a well-known phenomenon by which a discrete biomacromolecule can adopt multiple specific conformations in response to its environment. This term can be extended to the ability of biomacromolecules to pack into different ordered patterns. Thus, exploration and control of the polymorphism of biomacromolecules via supramolecular methods have been key steps in achieving bioinspired structures, developing bioinspired functional materials, and exploring the mechanisms of these self-assembly processes, which are models for more complex biological systems. This task could be difficult for proteins and carbohydrates due to the complicated multiple noncovalent interactions of these two species which can hardly be manipulated.In this account, dealing with the structural polymorphisms from biomacromolecular assemblies, we will first briefly comment on the problems that carbohydrate/protein assemblies are facing, and then on the basis of our long-term research on carbohydrate self-assemblies, we will summarize the new strategies that we have developed in our laboratory in recent years to explore and control the polymorphism of carbohydrate/protein assemblies.Considering the inherent ability of carbohydrates to recognize lectin, we proposed the "inducing ligand" strategy to assemble natural proteins into various nanostructures with highly ordered packing patterns. The newly developed inducing ligand approach opened a new window for protein assembly where dual noncovalent interactions (i.e., carbohydrate-protein interactions and dimerization of rhodamine) instead of the traditionally used protein-protein interactions direct the assembly pattern of proteins. As a result, various polymorphisms of protein assemblies have been constructed by simply changing the ligand chemical structure and/or the rhodamine dimerization.Another concept that we proposed for glycopolymer self-assembly is DISA (i.e., deprotection-induced glycopolymer self-assembly). It is well known that protection-deprotection chemistry has been employed to construct complex oligosaccharide structures. However, its application in glycopolymer self-assembly has been overlooked. We initiated this new strategy with diblock copolymers. Such copolymers with a carbohydrate block having protected pendent groups exist as single chains in organic media. The self-assembly can be initiated by the deprotection of the pendent groups. The process was nicely controlled by introducing various protective groups with different deprotection rates. Later on, the DISA process has been proven practical in water and even in the cellular environment, which opens a new avenue for the development of polymeric glycomaterials.Finally, the resultant polymeric glyco-materials, as a new type of biomimetic materials, provide a nice platform for investigating the functions of glycocalyx. The glycocalyx-mimicking nanoparticles achieved unprecedent functions which exceed their carbohydrate precursors. Here, the reversion of tumor-associated macrophages induced by glycocalyx-mimicking nanoparticles will be discussed with potential applications in cancer immunotherapy, where such a reversion effect could be combined with other methods (e.g., tumor checkpoint blockade).

摘要

在生物学中,多态性是一种众所周知的现象,即离散的生物大分子可以根据其环境采用多种特定构象。这个术语可以扩展到生物大分子能够包装成不同有序模式的能力。因此,通过超分子方法探索和控制生物大分子的多态性是实现仿生结构、开发仿生功能材料以及探索这些自组装过程机制的关键步骤,这些过程是更复杂的生物系统的模型。由于这两种物质的复杂的多种非共价相互作用难以操纵,因此对于蛋白质和碳水化合物来说,这可能是一项困难的任务。在本报告中,我们将首先简要评论碳水化合物/蛋白质组装所面临的问题,然后基于我们对碳水化合物自组装的长期研究,总结我们近年来在实验室中开发的探索和控制碳水化合物/蛋白质组装多态性的新策略。考虑到碳水化合物识别凝集素的固有能力,我们提出了“诱导配体”策略,将天然蛋白质组装成具有高度有序堆积模式的各种纳米结构。新开发的诱导配体方法为蛋白质组装开辟了一个新的窗口,其中双重非共价相互作用(即,碳水化合物-蛋白质相互作用和罗丹明二聚体)而不是传统使用的蛋白质-蛋白质相互作用指导蛋白质的组装模式。结果,通过简单地改变配体化学结构和/或罗丹明二聚体,构建了各种蛋白质组装的多态性。我们为糖聚合物自组装提出的另一个概念是 DISA(即,去保护诱导糖聚合物自组装)。众所周知,保护-去保护化学已被用于构建复杂的寡糖结构。然而,它在糖聚合物自组装中的应用被忽视了。我们从嵌段共聚物开始了这项新策略。具有保护侧基的糖聚合物嵌段在有机溶剂中以单链形式存在。通过去保护侧基可以引发自组装。通过引入具有不同去保护速率的各种保护基团,可以很好地控制该过程。后来,DISA 过程已被证明在水甚至细胞环境中是可行的,这为聚合物糖材料的发展开辟了新途径。最后,所得的聚合物糖材料作为一种新型仿生材料,为研究糖萼的功能提供了一个很好的平台。糖萼模拟纳米颗粒实现了超越其碳水化合物前体的前所未有的功能。在这里,将讨论糖萼模拟纳米颗粒诱导肿瘤相关巨噬细胞的逆转及其在癌症免疫治疗中的潜在应用,其中这种逆转效应可以与其他方法(例如,肿瘤检查点阻断)结合使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验