Suppr超能文献

激光成形修复34CrNiMo6钢的微观结构与摩擦学性能

Microstructure and Tribological Properties of Laser Forming Repaired 34CrNiMo6 Steel.

作者信息

Huang Chunping, Lin Xin, Yang Haiou, Liu Fencheng, Huang Weidong

机构信息

State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.

Engineering Research Center in Additive Manufacturing, Nanchang Hangkong University, Nanchang 330063, China.

出版信息

Materials (Basel). 2018 Sep 14;11(9):1722. doi: 10.3390/ma11091722.

Abstract

Laser forming repair (LFR) technology has considerable potential in high strength steel structure repair. 34CrNiMo6 steel has been widely used in high-value components, and it is imperative to repair these damaged components. In this study, two different thicknesses of repaired layers are deposited on the 34CrNiMo6 wrought substrate with five layers and 20 layers via LFR technology. The microstructure, phases, microhardness, and tribological properties are analyzed using optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness testing, and dry sliding wear testing. These results show that the 34CrNiMo6 repaired layers were successfully deposited on the substrate. The microstructure of the laser-repaired layers in the five-layer sample included bainite and retained austenite. For the 20-layer sample, the microstructure in the top of the repaired layers was still bainite and retained austenite, whereas that in the bottom of the repaired layers was transformed into ferrite and cementite. The average coefficients of friction of repaired layers is not significantly different from the substrate. The wear rate of the five LFR layers, 20-layer LFR, and substrate samples were 12.89 × 10, 15 × 10, and 23.87 × 10 mm³/N·m, respectively. The laser forming repaired samples had better wear resistance compared to the substrate. The wear mechanism of laser forming repaired samples is abrasive wear; whereas that of the substrate is abrasive wear and fatigue wear.

摘要

激光成形修复(LFR)技术在高强度钢结构修复方面具有巨大潜力。34CrNiMo6钢已广泛应用于高价值零部件,修复这些受损零部件势在必行。在本研究中,通过LFR技术在34CrNiMo6锻造基体上分别沉积了五层和二十层两种不同厚度的修复层。采用光学显微镜、扫描电子显微镜、X射线衍射、维氏硬度测试和干滑动磨损测试对其微观结构、相、显微硬度和摩擦学性能进行了分析。结果表明,已成功在基体上沉积了34CrNiMo6修复层。五层试样激光修复层的微观结构包括贝氏体和残余奥氏体。对于二十层试样,修复层顶部的微观结构仍是贝氏体和残余奥氏体,而修复层底部的微观结构则转变为铁素体和渗碳体。修复层的平均摩擦系数与基体无显著差异。五层LFR层、二十层LFR层和基体试样的磨损率分别为12.89×10、15×10和23.87×10 mm³/N·m。与基体相比,激光成形修复试样具有更好的耐磨性。激光成形修复试样的磨损机制为磨粒磨损;而基体的磨损机制为磨粒磨损和疲劳磨损。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df5/6164275/0482b5b2de64/materials-11-01722-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验