文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于场景识别和语义分析的屏幕阅读中不良坐姿检测方法。

A Scene Recognition and Semantic Analysis Approach to Unhealthy Sitting Posture Detection during Screen-Reading.

机构信息

School of Information Engineering, Nanchang University, Nanchang 330031, China.

School of Software Engineering, Nanchang University, Nanchang 330029, China.

出版信息

Sensors (Basel). 2018 Sep 16;18(9):3119. doi: 10.3390/s18093119.


DOI:10.3390/s18093119
PMID:30223598
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6163234/
Abstract

Behavior analysis through posture recognition is an essential research in robotic systems. Sitting with unhealthy sitting posture for a long time seriously harms human health and may even lead to lumbar disease, cervical disease and myopia. Automatic vision-based detection of unhealthy sitting posture, as an example of posture detection in robotic systems, has become a hot research topic. However, the existing methods only focus on extracting features of human themselves and lack understanding relevancies among objects in the scene, and henceforth fail to recognize some types of unhealthy sitting postures in complicated environments. To alleviate these problems, a scene recognition and semantic analysis approach to unhealthy sitting posture detection in screen-reading is proposed in this paper. The key skeletal points of human body are detected and tracked with a Microsoft Kinect sensor. Meanwhile, a deep learning method, Faster R-CNN, is used in the scene recognition of our method to accurately detect objects and extract relevant features. Then our method performs semantic analysis through Gaussian-Mixture behavioral clustering for scene understanding. The relevant features in the scene and the skeletal features extracted from human are fused into the semantic features to discriminate various types of sitting postures. Experimental results demonstrated that our method accurately and effectively detected various types of unhealthy sitting postures in screen-reading and avoided error detection in complicated environments. Compared with the existing methods, our proposed method detected more types of unhealthy sitting postures including those that the existing methods could not detect. Our method can be potentially applied and integrated as a medical assistance in robotic systems of health care and treatment.

摘要

通过姿势识别进行行为分析是机器人系统中的一项重要研究。长时间保持不健康的坐姿会严重危害人类健康,甚至可能导致腰椎病、颈椎病和近视。基于自动视觉的坐姿检测作为机器人系统中的一种姿势检测方法,已成为研究热点。然而,现有的方法仅关注于提取人体自身的特征,缺乏对场景中物体之间相关性的理解,因此无法识别复杂环境中的某些类型的不健康坐姿。为了解决这些问题,本文提出了一种针对屏幕阅读中不健康坐姿检测的场景识别和语义分析方法。该方法使用 Microsoft Kinect 传感器检测和跟踪人体的关键骨骼点。同时,该方法采用深度学习方法 Faster R-CNN 进行场景识别,以准确检测物体并提取相关特征。然后,该方法通过高斯混合行为聚类进行语义分析,以实现对场景的理解。将场景中的相关特征和从人体中提取的骨骼特征融合到语义特征中,以区分各种类型的坐姿。实验结果表明,该方法能够准确有效地检测屏幕阅读中的各种类型的不健康坐姿,并且避免了在复杂环境中的错误检测。与现有的方法相比,我们提出的方法可以检测到更多类型的不健康坐姿,包括现有的方法无法检测到的坐姿。该方法可以作为医疗保健和治疗机器人系统中的一种医学辅助手段进行潜在的应用和集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/35c40488d78e/sensors-18-03119-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/b102479986d8/sensors-18-03119-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/113fb5e6e0de/sensors-18-03119-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/19ae8fe01aa1/sensors-18-03119-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/2e2a603cbcc3/sensors-18-03119-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/55f6d7ba8939/sensors-18-03119-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/cc2fd42890bf/sensors-18-03119-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/d2de9c9ec95e/sensors-18-03119-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/4cad03d92920/sensors-18-03119-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/e360e16bc8bb/sensors-18-03119-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/bafd843ad6c7/sensors-18-03119-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/dfe34070ad2d/sensors-18-03119-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/35c40488d78e/sensors-18-03119-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/b102479986d8/sensors-18-03119-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/113fb5e6e0de/sensors-18-03119-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/19ae8fe01aa1/sensors-18-03119-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/2e2a603cbcc3/sensors-18-03119-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/55f6d7ba8939/sensors-18-03119-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/cc2fd42890bf/sensors-18-03119-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/d2de9c9ec95e/sensors-18-03119-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/4cad03d92920/sensors-18-03119-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/e360e16bc8bb/sensors-18-03119-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/bafd843ad6c7/sensors-18-03119-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/dfe34070ad2d/sensors-18-03119-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cb/6163234/35c40488d78e/sensors-18-03119-g012.jpg

相似文献

[1]
A Scene Recognition and Semantic Analysis Approach to Unhealthy Sitting Posture Detection during Screen-Reading.

Sensors (Basel). 2018-9-16

[2]
An Automated Sitting Posture Recognition System Utilizing Pressure Sensors.

Sensors (Basel). 2023-6-25

[3]
Saliency based human fall detection in smart home environments using posture recognition.

Health Informatics J. 2021

[4]
A Robot Object Recognition Method Based on Scene Text Reading in Home Environments.

Sensors (Basel). 2021-3-9

[5]
Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning.

Sensors (Basel). 2018-1-12

[6]
The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures.

Appl Ergon. 2015-7

[7]
Improved Self-Organizing Map-Based Unsupervised Learning Algorithm for Sitting Posture Recognition System.

Sensors (Basel). 2021-9-17

[8]
Hip Positioning and Sitting Posture Recognition Based on Human Sitting Pressure Image.

Sensors (Basel). 2021-1-9

[9]
The influence of different sitting postures on head/neck posture and muscle activity.

Man Ther. 2010-2

[10]
Real-time posture reconstruction for Microsoft Kinect.

IEEE Trans Cybern. 2013-8-22

引用本文的文献

[1]
Knowledge, attitude, and practice toward cervical spondylosis among the healthy general population.

BMC Public Health. 2025-3-14

[2]
SDES-YOLO: A high-precision and lightweight model for fall detection in complex environments.

Sci Rep. 2025-1-15

[3]
An Automated Sitting Posture Recognition System Utilizing Pressure Sensors.

Sensors (Basel). 2023-6-25

[4]
Yoga Posture Recognition and Quantitative Evaluation with Wearable Sensors Based on Two-Stage Classifier and Prior Bayesian Network.

Sensors (Basel). 2019-11-23

[5]
Graph Cut-Based Human Body Segmentation in Color Images Using Skeleton Information from the Depth Sensor.

Sensors (Basel). 2019-1-18

本文引用的文献

[1]
Latent Constrained Correlation Filter.

IEEE Trans Image Process. 2017-11-17

[2]
Gabor Convolutional Networks.

IEEE Trans Image Process. 2018-9

[3]
Action Recognition Using 3D Histograms of Texture and A Multi-Class Boosting Classifier.

IEEE Trans Image Process. 2017-6-21

[4]
Posture Detection Based on Smart Cushion for Wheelchair Users.

Sensors (Basel). 2017-3-29

[5]
Activity Recognition and Semantic Description for Indoor Mobile Localization.

Sensors (Basel). 2017-3-21

[6]
An Adaptive Semisupervised Feature Analysis for Video Semantic Recognition.

IEEE Trans Cybern. 2017-2-20

[7]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[8]
Fully Convolutional Networks for Semantic Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2016-5-24

[9]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

[10]
Accelerometer-Based Gait Recognition by Sparse Representation of Signature Points With Clusters.

IEEE Trans Cybern. 2014-11-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索