文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进的自组织映射的无监督学习算法在坐姿识别系统中的应用。

Improved Self-Organizing Map-Based Unsupervised Learning Algorithm for Sitting Posture Recognition System.

机构信息

College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China.

College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2021 Sep 17;21(18):6246. doi: 10.3390/s21186246.


DOI:10.3390/s21186246
PMID:34577452
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8473111/
Abstract

As the intensity of work increases, many of us sit for long hours while working in the office. It is not easy to sit properly at work all the time and sitting for a long time with wrong postures may cause a series of health problems as time goes by. In addition, monitoring the sitting posture of patients with spinal disease would be beneficial for their recovery. Accordingly, this paper designs and implements a sitting posture recognition system from a flexible array pressure sensor, which is used to acquire pressure distribution map of sitting hips in a real-time manner. Moreover, an improved self-organizing map-based classification algorithm for six kinds of sitting posture recognition is proposed to identify whether the current sitting posture is appropriate. The extensive experimental results verify that the performance of ISOM-based sitting posture recognition algorithm (ISOM-SPR) in short outperforms that of four kinds of traditional algorithms including decision tree-based (DT), K-means-based (KM), back propagation neural network-based (BP), self-organizing map-based (SOM) sitting posture recognition algorithms. Finally, it is proven that the proposed system based on ISOM-SPR algorithm has good robustness and high accuracy.

摘要

随着工作强度的增加,我们中的许多人在办公室工作时会长时间坐着。要一直正确坐姿并不容易,而且随着时间的推移,长时间以错误的姿势坐着可能会导致一系列健康问题。此外,监测脊柱疾病患者的坐姿对他们的康复是有益的。因此,本文设计并实现了一种坐姿识别系统,该系统使用柔性阵列压力传感器实时获取坐姿臀部的压力分布图。此外,还提出了一种改进的基于自组织映射的分类算法,用于识别六种坐姿。实验结果表明,基于 ISOM 的坐姿识别算法(ISOM-SPR)在短期性能上优于包括决策树(DT)、基于 K-均值(KM)、基于反向传播神经网络(BP)、基于自组织映射(SOM)坐姿识别算法在内的四种传统算法。最后,证明了基于 ISOM-SPR 算法的提出的系统具有良好的鲁棒性和高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/87ce7facc3ba/sensors-21-06246-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/7c47f5a323c4/sensors-21-06246-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/07300dede477/sensors-21-06246-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/b139904dff35/sensors-21-06246-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/949af0b4a075/sensors-21-06246-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/4f66923cb41e/sensors-21-06246-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/77b5a3cbe75e/sensors-21-06246-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/87642752b539/sensors-21-06246-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/46d7a9fc11a4/sensors-21-06246-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/a4d6d5ed3dd9/sensors-21-06246-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/c8df51eacf71/sensors-21-06246-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/1b41d672874a/sensors-21-06246-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/8e384229c40f/sensors-21-06246-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/007555c306db/sensors-21-06246-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/d315c0c40443/sensors-21-06246-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/0df6c19efa63/sensors-21-06246-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/87ce7facc3ba/sensors-21-06246-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/7c47f5a323c4/sensors-21-06246-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/07300dede477/sensors-21-06246-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/b139904dff35/sensors-21-06246-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/949af0b4a075/sensors-21-06246-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/4f66923cb41e/sensors-21-06246-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/77b5a3cbe75e/sensors-21-06246-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/87642752b539/sensors-21-06246-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/46d7a9fc11a4/sensors-21-06246-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/a4d6d5ed3dd9/sensors-21-06246-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/c8df51eacf71/sensors-21-06246-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/1b41d672874a/sensors-21-06246-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/8e384229c40f/sensors-21-06246-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/007555c306db/sensors-21-06246-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/d315c0c40443/sensors-21-06246-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/0df6c19efa63/sensors-21-06246-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/8473111/87ce7facc3ba/sensors-21-06246-g016.jpg

相似文献

[1]
Improved Self-Organizing Map-Based Unsupervised Learning Algorithm for Sitting Posture Recognition System.

Sensors (Basel). 2021-9-17

[2]
A Proposal of Implementation of Sitting Posture Monitoring System for Wheelchair Utilizing Machine Learning Methods.

Sensors (Basel). 2021-9-23

[3]
An Automated Sitting Posture Recognition System Utilizing Pressure Sensors.

Sensors (Basel). 2023-6-25

[4]
Development of a sitting posture monitoring system for children using pressure sensors: An application of convolutional neural network.

Work. 2022

[5]
Hip Positioning and Sitting Posture Recognition Based on Human Sitting Pressure Image.

Sensors (Basel). 2021-1-9

[6]
Intelligent Posture Training: Machine-Learning-Powered Human Sitting Posture Recognition Based on a Pressure-Sensing IoT Cushion.

Sensors (Basel). 2022-7-17

[7]
Development of a Smart Chair Sensors System and Classification of Sitting Postures with Deep Learning Algorithms.

Sensors (Basel). 2022-7-26

[8]
Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors.

Biomed Res Int. 2016

[9]
Smart Sensing Chairs for Sitting Posture Detection, Classification, and Monitoring: A Comprehensive Review.

Sensors (Basel). 2024-5-5

[10]
Implementing Machine Learning Algorithms to Classify Postures and Forecast Motions When Using a Dynamic Chair.

Sensors (Basel). 2022-1-5

引用本文的文献

[1]
Smart Sensing Chairs for Sitting Posture Detection, Classification, and Monitoring: A Comprehensive Review.

Sensors (Basel). 2024-5-5

[2]
Detecting Phase-Synchrony Connectivity Anomalies in EEG Signals. Application to Dyslexia Diagnosis.

Sensors (Basel). 2021-10-25

本文引用的文献

[1]
Development of wearable posture monitoring system for dynamic assessment of sitting posture.

Australas Phys Eng Sci Med. 2019-12-19

[2]
Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning.

Sensors (Basel). 2018-1-12

[3]
Reliability of forward head posture evaluation while sitting, standing, walking and running.

Hum Mov Sci. 2017-10

[4]
Auto detection and segmentation of daily living activities during a Timed Up and Go task in people with Parkinson's disease using multiple inertial sensors.

J Neuroeng Rehabil. 2017-4-7

[5]
Sagittal evaluation of usual standing and sitting spinal posture.

J Bodyw Mov Ther. 2016-4

[6]
Thoracic and lumbar posture behaviour in sitting tasks and standing: Progressing the biomechanics from observations to measurements.

Appl Ergon. 2016-3

[7]
Wearable monitoring of seated spinal posture.

IEEE Trans Biomed Circuits Syst. 2008-6

[8]
Perceptions of sitting posture among members of the community, both with and without non-specific chronic low back pain.

Man Ther. 2013-12

[9]
Systematic review of sedentary behaviour and health indicators in school-aged children and youth.

Int J Behav Nutr Phys Act. 2011-9-21

[10]
Physical inactivity and mortality risk.

Cardiol Res Pract. 2011-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索