Suppr超能文献

利用压力传感器的自动坐姿识别系统。

An Automated Sitting Posture Recognition System Utilizing Pressure Sensors.

机构信息

Computer Science and Information Engineering, National Yunlin University of Science and Technology, Yunlin 640301, Taiwan.

Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Yunlin 640301, Taiwan.

出版信息

Sensors (Basel). 2023 Jun 25;23(13):5894. doi: 10.3390/s23135894.

Abstract

Prolonged sitting with poor posture can lead to various health problems, including upper back pain, lower back pain, and cervical pain. Maintaining proper sitting posture is crucial for individuals while working or studying. Existing pressure sensor-based systems have been proposed to recognize sitting postures, but their accuracy ranges from 80% to 90%, leaving room for improvement. In this study, we developed a sitting posture recognition system called SPRS. We identified key areas on the chair surface that capture essential characteristics of sitting postures and employed diverse machine learning technologies to recognize ten common sitting postures. To evaluate the accuracy and usability of SPRS, we conducted a ten-minute sitting session with arbitrary postures involving 20 volunteers. The experimental results demonstrated that SPRS achieved an impressive accuracy rate of up to 99.1% in recognizing sitting postures. Additionally, we performed a usability survey using two standard questionnaires, the System Usability Scale (SUS) and the Questionnaire for User Interface Satisfaction (QUIS). The analysis of survey results indicated that SPRS is user-friendly, easy to use, and responsive.

摘要

长时间坐姿不良可能会导致各种健康问题,包括上背痛、下背痛和颈痛。无论是工作还是学习,保持正确的坐姿对个人而言都至关重要。现有的基于压力传感器的系统已经被提出用于识别坐姿,但它们的准确率在 80%到 90%之间,仍有改进的空间。在这项研究中,我们开发了一种称为 SPRS 的坐姿识别系统。我们确定了椅子表面上的关键区域,这些区域捕捉到了坐姿的基本特征,并采用了多种机器学习技术来识别十种常见的坐姿。为了评估 SPRS 的准确性和可用性,我们让 20 名志愿者进行了十分钟的任意坐姿测试。实验结果表明,SPRS 在识别坐姿方面的准确率高达 99.1%。此外,我们使用两个标准问卷,即系统可用性量表(SUS)和用户界面满意度问卷(QUIS),进行了可用性调查。对调查结果的分析表明,SPRS 易于使用、响应迅速且用户友好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8e/10346482/572760a8b66d/sensors-23-05894-g001.jpg

相似文献

1
An Automated Sitting Posture Recognition System Utilizing Pressure Sensors.
Sensors (Basel). 2023 Jun 25;23(13):5894. doi: 10.3390/s23135894.
6
Design and Development of a Sitting Posture Recognition System.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3364-3367. doi: 10.1109/EMBC.2019.8856635.
10
Influence of design of dentist's chairs on body posture for dentists with different working experience.
BMC Musculoskelet Disord. 2021 May 19;22(1):462. doi: 10.1186/s12891-021-04334-1.

引用本文的文献

2
One-Dimensional Motion Representation for Standing/Sitting and Their Transitions.
Sensors (Basel). 2024 Oct 30;24(21):6967. doi: 10.3390/s24216967.
4
Intelligent systems for sitting posture monitoring and anomaly detection: an overview.
J Neuroeng Rehabil. 2024 Feb 20;21(1):28. doi: 10.1186/s12984-024-01322-z.
5
Effect of different loads on facet joint motion during lumbar lateral bending in sitting position.
J Orthop Surg Res. 2024 Jan 13;19(1):61. doi: 10.1186/s13018-024-04533-1.

本文引用的文献

1
Hip Positioning and Sitting Posture Recognition Based on Human Sitting Pressure Image.
Sensors (Basel). 2021 Jan 9;21(2):426. doi: 10.3390/s21020426.
2
Developing and Evaluating a Mixed Sensor Smart Chair System for Real-Time Posture Classification: Combining Pressure and Distance Sensors.
IEEE J Biomed Health Inform. 2021 May;25(5):1805-1813. doi: 10.1109/JBHI.2020.3030096. Epub 2021 May 11.
3
5
Inverse Piezoresistive Nanocomposite Sensors for Identifying Human Sitting Posture.
Sensors (Basel). 2018 May 29;18(6):1745. doi: 10.3390/s18061745.
6
Introduction to machine learning: k-nearest neighbors.
Ann Transl Med. 2016 Jun;4(11):218. doi: 10.21037/atm.2016.03.37.
7
Computer use increases the risk of musculoskeletal disorders among newspaper office workers.
Arch Med Res. 2003 Jul-Aug;34(4):331-42. doi: 10.1016/S0188-4409(03)00053-5.
8
Low back joint loading and kinematics during standing and unsupported sitting.
Ergonomics. 2001 Feb 20;44(3):280-94. doi: 10.1080/00140130118276.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验