IEEE Trans Image Process. 2018 Mar;27(3):1038-1048. doi: 10.1109/TIP.2017.2775060. Epub 2017 Nov 17.
Correlation filters are special classifiers designed for shift-invariant object recognition, which are robust to pattern distortions. The recent literature shows that combining a set of sub-filters trained based on a single or a small group of images obtains the best performance. The idea is equivalent to estimating variable distribution based on the data sampling (bagging), which can be interpreted as finding solutions (variable distribution approximation) directly from sampled data space. However, this methodology fails to account for the variations existed in the data. In this paper, we introduce an intermediate step-solution sampling-after the data sampling step to form a subspace, in which an optimal solution can be estimated. More specifically, we propose a new method, named latent constrained correlation filters (LCCF), by mapping the correlation filters to a given latent subspace, and develop a new learning framework in the latent subspace that embeds distribution-related constraints into the original problem. To solve the optimization problem, we introduce a subspace-based alternating direction method of multipliers, which is proven to converge at the saddle point. Our approach is successfully applied to three different tasks, including eye localization, car detection, and object tracking. Extensive experiments demonstrate that LCCF outperforms the state-of-the-art methods. .
相关滤波器是专门为平移不变目标识别设计的分类器,对模式变形具有鲁棒性。最近的文献表明,结合基于单个或少数几个图像训练的一组子滤波器可以获得最佳性能。这个想法相当于基于数据采样(装袋)来估计变量分布,可以直接从采样数据空间中找到解决方案(变量分布逼近)。然而,这种方法无法考虑到数据中的变化。在本文中,我们在数据采样步骤之后引入了一个中间步骤-解决方案采样,以形成一个子空间,在该子空间中可以估计出最优解。具体来说,我们通过将相关滤波器映射到给定的潜在子空间,提出了一种名为潜在约束相关滤波器(LCCF)的新方法,并在潜在子空间中开发了一个新的学习框架,将分布相关约束嵌入到原始问题中。为了解决优化问题,我们引入了基于子空间的增广拉格朗日乘子法,该方法在鞍点处被证明是收敛的。我们的方法成功应用于三个不同的任务,包括眼睛定位、车辆检测和目标跟踪。广泛的实验表明,LCCF 优于最先进的方法。
IEEE Trans Image Process. 2017-11-17
IEEE Trans Neural Netw Learn Syst. 2025-3
IEEE Trans Pattern Anal Mach Intell. 2015-10
Sensors (Basel). 2017-12-12
IEEE Trans Pattern Anal Mach Intell. 2019-2
IEEE Trans Cybern. 2016-10-31
IEEE Trans Image Process. 2018-11-16
IEEE Trans Pattern Anal Mach Intell. 2016-9-15
IEEE Trans Cybern. 2015-8-3
Sensors (Basel). 2019-10-18
Sensors (Basel). 2018-9-11
Sensors (Basel). 2018-8-21
Sensors (Basel). 2018-7-20
Sensors (Basel). 2018-6-22
Sensors (Basel). 2018-3-20