Suppr超能文献

数字人前臂和手。

The digital human forearm and hand.

机构信息

Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium.

出版信息

J Anat. 2018 Nov;233(5):557-566. doi: 10.1111/joa.12877. Epub 2018 Sep 17.

Abstract

How changes in anatomy affect joint biomechanics can be studied using musculoskeletal modelling, making it a valuable tool to explore joint function in healthy and pathological joints. However, gathering the anatomical, geometrical and physiological data necessary to create a model can be challenging. Very few integrated datasets exist and even less raw data is openly available to create new models. Therefore, the goal of the present study is to create an integrated digital forearm and make the raw data available via an open-access database. An un-embalmed cadaveric arm was digitized using 7T MRI and CT scans. 3D geometrical models of bones, cartilage, muscle and muscle pathways were created. After MRI and CT scanning, physiological muscle parameters (e.g. muscle volume, mass, length, pennation angle, physiological cross-sectional area, tendon length) were obtained via detailed dissection. After dissection, muscle biopsies were fixated and confocal microscopy was used to visualize and measure sarcomere lengths. This study provides an integrated anatomical dataset on which complete and accurate musculoskeletal models of the hand can be based. By creating a 3D digital human forearm, including all relevant anatomical parameters, a more realistic musculoskeletal model can be created. Furthermore, open access to the anatomical dataset makes it possible for other researchers to use these data in the development of a musculoskeletal model of the hand.

摘要

解剖结构的变化如何影响关节生物力学可以通过肌肉骨骼建模来研究,这使其成为探索健康和患病关节关节功能的有价值的工具。然而,收集创建模型所需的解剖学、几何学和生理学数据可能具有挑战性。非常少的综合数据集存在,甚至更少的原始数据可公开用于创建新模型。因此,本研究的目的是创建一个集成的数字前臂,并通过开放访问数据库提供原始数据。使用 7T MRI 和 CT 扫描对未防腐的尸体手臂进行数字化。创建了骨骼、软骨、肌肉和肌肉途径的 3D 几何模型。在 MRI 和 CT 扫描后,通过详细解剖获得生理肌肉参数(例如肌肉体积、质量、长度、肌纤维角、生理横截面积、肌腱长度)。解剖后,将肌肉活检固定并使用共聚焦显微镜可视化和测量肌节长度。本研究提供了一个综合的解剖数据集,在此数据集上可以构建完整且准确的手部肌肉骨骼模型。通过创建包括所有相关解剖参数的 3D 数字人类前臂,可以创建更逼真的肌肉骨骼模型。此外,对解剖数据集的开放访问使其他研究人员能够在手的肌肉骨骼模型的开发中使用这些数据。

相似文献

1
The digital human forearm and hand.数字人前臂和手。
J Anat. 2018 Nov;233(5):557-566. doi: 10.1111/joa.12877. Epub 2018 Sep 17.
9
Parameters for modeling the upper extremity.上肢建模参数。
J Biomech. 1997 Jun;30(6):647-52. doi: 10.1016/s0021-9290(97)00011-0.

本文引用的文献

5
Predicting postoperative gait in cerebral palsy.预测脑瘫患者术后步态
Gait Posture. 2017 Feb;52:45-51. doi: 10.1016/j.gaitpost.2016.11.012. Epub 2016 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验