文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于多光谱光学成像中血氧测定法验证的拟人化组织模拟体模。

Anthropomorphic tissue-mimicking phantoms for oximetry validation in multispectral optical imaging.

作者信息

Dreher Kris K, Gröhl Janek, Grace Friso, Ayala Leonardo, Nölke Jan-Hinrich, Bender Christoph J, Watt Melissa J, White Katie-Lou, Tao Ran, Johnen Wibke, Tizabi Minu D, Seitel Alexander, Maier-Hein Lena, Bohndiek Sarah E

机构信息

German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems (IMSY), Heidelberg, Germany.

Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany.

出版信息

J Biomed Opt. 2025 Jul;30(7):076006. doi: 10.1117/1.JBO.30.7.076006. Epub 2025 Jul 17.


DOI:10.1117/1.JBO.30.7.076006
PMID:40678081
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12267859/
Abstract

SIGNIFICANCE: Optical imaging of blood oxygenation ( ) can be achieved based on the differential absorption spectra of oxy- and deoxyhemoglobin. A key challenge in realizing clinical validation of the biomarkers is the absence of reliable reference standards, including test objects. AIM: To enable quantitative testing of multispectral imaging methods for assessment of by introducing anthropomorphic phantoms with appropriate tissue-mimicking optical properties. APPROACH: We used the stable copolymer-in-oil base material to create physical anthropomorphic structures and optimized dyes to mimic the optical absorption of blood across a wide spectral range. Using 3D-printed phantom molds generated from a magnetic resonance image of a human forearm, we molded the material into an anthropomorphic shape. Using both reflectance hyperspectral imaging (HSI) and photoacoustic tomography (PAT), we acquired images of the forearm phantoms and evaluated the performance of linear spectral unmixing (LSU). RESULTS: Based on 10 fabricated forearm phantoms with vessel-like structures featuring five distinct levels (between 0 and 100%), we showed that the measured absorption spectra of the material correlated well with HSI and PAT data with a Pearson correlation coefficient consistently above 0.8. Further, the application of LSU enabled a quantification of the mean absolute error in assessment with HSI and PAT. CONCLUSIONS: Our anthropomorphic tissue-mimicking phantoms hold potential to provide a robust tool for developing, standardising, and validating optical imaging of .

摘要

意义:基于氧合血红蛋白和脱氧血红蛋白的差分吸收光谱,可以实现血液氧合( )的光学成像。实现这些生物标志物临床验证的一个关键挑战是缺乏可靠的参考标准,包括测试对象。 目的:通过引入具有适当组织模拟光学特性的人体模型,实现对多光谱成像方法评估血液氧合的定量测试。 方法:我们使用稳定的油包共聚物基材来创建物理人体结构,并优化染料以模拟宽光谱范围内血液的光吸收。利用从人体前臂的磁共振图像生成的3D打印模型模具,我们将材料模制成人体形状。使用反射率高光谱成像(HSI)和光声断层扫描(PAT),我们获取了前臂模型的图像,并评估了线性光谱解混(LSU)的性能。 结果:基于10个制造的具有血管样结构的前臂模型,其具有五个不同的血液氧合水平(介于0和100%之间),我们表明该材料的测量吸收光谱与HSI和PAT数据具有良好的相关性,皮尔逊相关系数始终高于0.8。此外,LSU的应用能够量化HSI和PAT在血液氧合评估中的平均绝对误差。 结论:我们的人体组织模拟模型有潜力为开发、标准化和验证血液氧合的光学成像提供一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/e4c97ad76e78/JBO-030-076006-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/876c100ba03b/JBO-030-076006-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/623642c377dc/JBO-030-076006-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/f5ac79dffe95/JBO-030-076006-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/4ef842ed282d/JBO-030-076006-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/47ee8ea72aee/JBO-030-076006-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/13fff2fe07cb/JBO-030-076006-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/e4c97ad76e78/JBO-030-076006-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/876c100ba03b/JBO-030-076006-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/623642c377dc/JBO-030-076006-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/f5ac79dffe95/JBO-030-076006-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/4ef842ed282d/JBO-030-076006-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/47ee8ea72aee/JBO-030-076006-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/13fff2fe07cb/JBO-030-076006-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12267859/e4c97ad76e78/JBO-030-076006-g007.jpg

相似文献

[1]
Anthropomorphic tissue-mimicking phantoms for oximetry validation in multispectral optical imaging.

J Biomed Opt. 2025-7

[2]
Validation of subpixel target detection and linear spectral unmixing techniques on short-wave infrared hyperspectral images of collagen phantoms.

J Biomed Opt. 2025-2

[3]
Photoacoustic imaging of rat kidney tissue oxygenation using second near-infrared wavelengths.

J Biomed Opt. 2025-2

[4]
Low-cost microvascular phantom for photoacoustic imaging using loofah.

J Biomed Opt. 2025-1

[5]
Development and characterization of silicone-based tissue phantoms for pulse oximeter performance testing.

J Biomed Opt. 2024-6

[6]
Hyperspectral imaging of 4T1 mammary carcinomas grown in dorsal skinfold window chambers: spectral renormalization and fluorescence modeling.

J Biomed Opt. 2024-9

[7]
A deep learning approach to estimate x-ray scatter in digital breast tomosynthesis: From phantom models to clinical applications.

Med Phys. 2023-8

[8]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[9]
Influence of phantom design on evaluation metrics in photon counting spectral head CT: a simulation study.

J Med Imaging (Bellingham). 2025-7

[10]
Effects of phantom microstructure on their optical properties.

J Biomed Opt. 2024-9

本文引用的文献

[1]
Artificial neural networks trained on simulated multispectral data for real-time imaging of skin microcirculatory blood oxygen saturation.

J Biomed Opt. 2024-6

[2]
Tutorial on methods for estimation of optical absorption and scattering properties of tissue.

J Biomed Opt. 2024-6

[3]
Photoacoustic Quantification of Tissue Oxygenation Using Conditional Invertible Neural Networks.

IEEE Trans Med Imaging. 2024-9

[4]
Effects of skin tone on photoacoustic imaging and oximetry.

J Biomed Opt. 2024-1

[5]
Moving Beyond Simulation: Data-Driven Quantitative Photoacoustic Imaging Using Tissue-Mimicking Phantoms.

IEEE Trans Med Imaging. 2024-3

[6]
Photoacoustic imaging on its way toward clinical utility: a tutorial review focusing on practical application in medicine.

J Biomed Opt. 2023-12

[7]
Development of a platform for broadband, spectra-fitted, tissue optical phantoms.

J Biomed Opt. 2023-2

[8]
Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis.

J Biomed Opt. 2022-8

[9]
Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation.

Nat Biomed Eng. 2022-5

[10]
Band selection for oxygenation estimation with multispectral/hyperspectral imaging.

Biomed Opt Express. 2022-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索