Dreher Kris K, Gröhl Janek, Grace Friso, Ayala Leonardo, Nölke Jan-Hinrich, Bender Christoph J, Watt Melissa J, White Katie-Lou, Tao Ran, Johnen Wibke, Tizabi Minu D, Seitel Alexander, Maier-Hein Lena, Bohndiek Sarah E
German Cancer Research Center (DKFZ), Division of Intelligent Medical Systems (IMSY), Heidelberg, Germany.
Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany.
J Biomed Opt. 2025 Jul;30(7):076006. doi: 10.1117/1.JBO.30.7.076006. Epub 2025 Jul 17.
SIGNIFICANCE: Optical imaging of blood oxygenation ( ) can be achieved based on the differential absorption spectra of oxy- and deoxyhemoglobin. A key challenge in realizing clinical validation of the biomarkers is the absence of reliable reference standards, including test objects. AIM: To enable quantitative testing of multispectral imaging methods for assessment of by introducing anthropomorphic phantoms with appropriate tissue-mimicking optical properties. APPROACH: We used the stable copolymer-in-oil base material to create physical anthropomorphic structures and optimized dyes to mimic the optical absorption of blood across a wide spectral range. Using 3D-printed phantom molds generated from a magnetic resonance image of a human forearm, we molded the material into an anthropomorphic shape. Using both reflectance hyperspectral imaging (HSI) and photoacoustic tomography (PAT), we acquired images of the forearm phantoms and evaluated the performance of linear spectral unmixing (LSU). RESULTS: Based on 10 fabricated forearm phantoms with vessel-like structures featuring five distinct levels (between 0 and 100%), we showed that the measured absorption spectra of the material correlated well with HSI and PAT data with a Pearson correlation coefficient consistently above 0.8. Further, the application of LSU enabled a quantification of the mean absolute error in assessment with HSI and PAT. CONCLUSIONS: Our anthropomorphic tissue-mimicking phantoms hold potential to provide a robust tool for developing, standardising, and validating optical imaging of .
意义:基于氧合血红蛋白和脱氧血红蛋白的差分吸收光谱,可以实现血液氧合( )的光学成像。实现这些生物标志物临床验证的一个关键挑战是缺乏可靠的参考标准,包括测试对象。 目的:通过引入具有适当组织模拟光学特性的人体模型,实现对多光谱成像方法评估血液氧合的定量测试。 方法:我们使用稳定的油包共聚物基材来创建物理人体结构,并优化染料以模拟宽光谱范围内血液的光吸收。利用从人体前臂的磁共振图像生成的3D打印模型模具,我们将材料模制成人体形状。使用反射率高光谱成像(HSI)和光声断层扫描(PAT),我们获取了前臂模型的图像,并评估了线性光谱解混(LSU)的性能。 结果:基于10个制造的具有血管样结构的前臂模型,其具有五个不同的血液氧合水平(介于0和100%之间),我们表明该材料的测量吸收光谱与HSI和PAT数据具有良好的相关性,皮尔逊相关系数始终高于0.8。此外,LSU的应用能够量化HSI和PAT在血液氧合评估中的平均绝对误差。 结论:我们的人体组织模拟模型有潜力为开发、标准化和验证血液氧合的光学成像提供一个强大的工具。
J Biomed Opt. 2025-1
Cochrane Database Syst Rev. 2018-1-22
J Med Imaging (Bellingham). 2025-7
J Biomed Opt. 2024-9
IEEE Trans Med Imaging. 2024-9
J Biomed Opt. 2024-1
IEEE Trans Med Imaging. 2024-3
J Biomed Opt. 2022-8
Biomed Opt Express. 2022-2-3