Yang Guang, Ivanov Ilia N, Ruther Rose E, Sacci Robert L, Subjakova Veronika, Hallinan Daniel T, Nanda Jagjit
Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
Department of Nuclear Physics and Biophysics , Comenius University , Mlynska dolina F1 , Bratislava 84248 , Slovakia.
ACS Nano. 2018 Oct 23;12(10):10159-10170. doi: 10.1021/acsnano.8b05038. Epub 2018 Sep 25.
Understanding the fundamental factors that drive ion solvation structure and transport is key to design high-performance, stable battery electrolytes. Reversible ion solvation and desolvation are critical to the interfacial charge-transfer process across the solid-liquid interface as well as the resulting stability of the solid electrolyte interphase. Herein, we report the study of Li salt solvation structure in aprotic solution in the immediate vicinity (∼20 nm) of the solid electrode-liquid interface using surface-enhanced Raman spectroscopy (SERS) from a gold nanoparticle (Au NP) monolayer. The plasmonic coupling between Au NPs produces strong electromagnetic field enhancement in the gap region, leading to a 5 orders of magnitude increase in Raman intensity for electrolyte components and their mixtures namely, lithium hexafluorophosphate, fluoroethylene carbonate, ethylene carbonate, and diethyl carbonate. Further, we estimate and compare the lithium-ion solvation number derived from SERS, standard Raman spectroscopy, and Fourier transform infrared spectroscopy experiments to monitor and ascertain the changes in the solvation shell diameter in the confined nanogap region where there is maximum enhancement of the electric field. Our findings provide a multimodal spectroscopic approach to gain fundamental insights into the molecular structure of the electrolyte at the solid-liquid interface.
了解驱动离子溶剂化结构和传输的基本因素是设计高性能、稳定电池电解质的关键。可逆的离子溶剂化和去溶剂化对于跨固液界面的界面电荷转移过程以及由此产生的固体电解质界面相的稳定性至关重要。在此,我们报告了使用来自金纳米颗粒(Au NP)单层的表面增强拉曼光谱(SERS)对固体电极-液体界面紧邻区域(约20 nm)中非质子溶液中锂盐溶剂化结构的研究。Au NPs之间的等离子体耦合在间隙区域产生强烈的电磁场增强,导致电解质成分及其混合物(即六氟磷酸锂、氟代碳酸乙烯酯、碳酸乙烯酯和碳酸二乙酯)的拉曼强度增加5个数量级。此外,我们估计并比较了从SERS、标准拉曼光谱和傅里叶变换红外光谱实验得出的锂离子溶剂化数,以监测和确定在电场增强最大的受限纳米间隙区域中溶剂化壳直径的变化。我们的研究结果提供了一种多模态光谱方法,以深入了解固液界面处电解质的分子结构。