文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

梓醇通过抑制 RhoA/ROCK-2 通路抑制和紧密连接蛋白上调抑制脂多糖诱导的血脑屏障通透性破坏。

RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability.

机构信息

College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2# Tiansheng Road, Beibei District, Chongqing 400715, China.

Sichuan Vocational College of Health and Rehabilitation, Zigong 643000, China.

出版信息

Molecules. 2018 Sep 17;23(9):2371. doi: 10.3390/molecules23092371.


DOI:10.3390/molecules23092371
PMID:30227623
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6225311/
Abstract

Lipopolysaccaride (LPS) directly or indirectly injures brain microvascular endothelial cells (BMECs) and damages the intercellular tight junction that gives rise to altered blood-brain barrier (BBB) permeability. Catalpol plays a protective role in LPS-induced injury, but whether catalpol protects against LPS-caused damage of BBB permeability and the underlying mechanism remain to be delineated. Prophylactic protection with catalpol (5 mg/kg, i.v.) consecutively for three days reversed the LPS-induced damage of BBB by decreased Evans Blue (EB) leakage and restored tight junctions in C57 mice. Besides, catalpol co-administrated with LPS increased BMECs survival, decreased their endothelin-1, TNF-Α and IL-6 secretion, improved transmembrane electrical resistance in a time-dependent manner, and in addition increased the fluorescein sodium permeability coefficient of BMECs. Also, transmission electron microscopy showed catalpol protective effects on tight junctions. Fluorescence staining displayed that catalpol reversed the rearrangement of the cytoskeleton protein F-actin and upregulated the tight junction protein of claudin-5 and ZO-1, which have been further demonstrated by the mRNA and protein expression levels of ZO-1, ZO-2, ZO-3, claudin-5, and occludin. Moreover, catalpol concurrently downregulated the mRNA and protein levels of RhoA, and ROCK2, the critical proteins in the RhoA/ROCK2 signaling pathway. This study thus indicated that catalpol, via inhibition of the RhoA/ROCK2 signaling pathway, reverses the disaggregation of cytoskeleton actin in BMECs and prevents down-regulation of junctional proteins, such as claudin-5, occludin, and ZO-1, and decreases endothelin-1 and inflammatory cytokine secretion, eventually alleviating the increase in LPS-induced BBB permeability.

摘要

脂多糖 (LPS) 可直接或间接损伤脑微血管内皮细胞 (BMECs),破坏细胞间紧密连接,导致血脑屏障 (BBB) 通透性改变。梓醇在 LPS 诱导的损伤中发挥保护作用,但梓醇是否能保护 BBB 免受 LPS 引起的损伤以及其潜在机制仍需阐明。梓醇 (5mg/kg,iv) 连续预处理 3 天可减轻 LPS 诱导的 C57 小鼠 BBB 损伤,表现为 Evans Blue (EB) 渗漏减少,紧密连接恢复正常。此外,梓醇与 LPS 联合应用可增加 BMECs 的存活率,减少内皮素-1、TNF-α和 IL-6 的分泌,以时间依赖的方式提高跨膜电阻,并增加 BMECs 的荧光素钠通透性系数。此外,透射电镜显示梓醇对紧密连接具有保护作用。荧光染色显示梓醇可逆转细胞骨架蛋白 F-actin 的重排,并上调紧密连接蛋白 Claudin-5 和 ZO-1 的表达,这一点已通过 ZO-1、ZO-2、ZO-3、Claudin-5 和 Occludin 的 mRNA 和蛋白表达水平得到进一步证实。此外,梓醇可同时下调 RhoA 和 ROCK2 的 mRNA 和蛋白表达,RhoA/ROCK2 信号通路中的关键蛋白。综上所述,梓醇通过抑制 RhoA/ROCK2 信号通路,逆转了 BMECs 细胞骨架肌动蛋白的解聚,防止了紧密连接蛋白如 Claudin-5、Occludin 和 ZO-1 的下调,并减少了内皮素-1 和炎性细胞因子的分泌,最终减轻了 LPS 诱导的 BBB 通透性增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/e7c6732aa001/molecules-23-02371-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/00dad584fc80/molecules-23-02371-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/dc84bcd8e70c/molecules-23-02371-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/9d8ad844eb11/molecules-23-02371-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/cca777b1e58e/molecules-23-02371-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/47dba4ad91a3/molecules-23-02371-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/96c4821a16c2/molecules-23-02371-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/b676b9561ce3/molecules-23-02371-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/3dd9cc4aee48/molecules-23-02371-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/da987c045d51/molecules-23-02371-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/e7c6732aa001/molecules-23-02371-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/00dad584fc80/molecules-23-02371-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/dc84bcd8e70c/molecules-23-02371-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/9d8ad844eb11/molecules-23-02371-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/cca777b1e58e/molecules-23-02371-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/47dba4ad91a3/molecules-23-02371-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/96c4821a16c2/molecules-23-02371-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/b676b9561ce3/molecules-23-02371-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/3dd9cc4aee48/molecules-23-02371-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/da987c045d51/molecules-23-02371-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7f/6225311/e7c6732aa001/molecules-23-02371-g010.jpg

相似文献

[1]
RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability.

Molecules. 2018-9-17

[2]
[Protective effect of catalpolon destruction of tight junctions of high glucose induced BMECs].

Zhongguo Zhong Yao Za Zhi. 2018-10

[3]
Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway.

Biochem Biophys Res Commun. 2018-12-26

[4]
Potential Regulatory Effects of Corticotropin-Releasing Factor on Tight Junction-Related Intestinal Epithelial Permeability are Partially Mediated by CK8 Upregulation.

Cell Physiol Biochem. 2017

[5]
Increased activity of Rho kinase contributes to hemoglobin-induced early disruption of the blood-brain barrier in vivo after the occurrence of intracerebral hemorrhage.

Int J Clin Exp Pathol. 2014-10-15

[6]
Plant-derived triterpene celastrol ameliorates oxygen glucose deprivation-induced disruption of endothelial barrier assembly via inducing tight junction proteins.

Phytomedicine. 2016-12-1

[7]
Oligomeric Tau-induced oxidative damage and functional alterations in cerebral endothelial cells: Role of RhoA/ROCK signaling pathway.

Free Radic Biol Med. 2024-8-20

[8]
Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton.

J Neurosci Res. 2008-4

[9]
DL-3-n-butylphthalide protects the blood-brain barrier against ischemia/hypoxia injury via upregulation of tight junction proteins.

Chin Med J (Engl). 2019-6-5

[10]
Effects of erythropoietin on blood-brain barrier tight junctions in ischemia-reperfusion rats.

J Mol Neurosci. 2012-9-22

引用本文的文献

[1]
Breaking the Barrier: The Role of Proinflammatory Cytokines in BBB Dysfunction.

Int J Mol Sci. 2025-4-9

[2]
Involvement of RhoA/ROCK Signaling Pathway in Methamphetamine-Induced Blood-Brain Barrier Disruption.

Biomolecules. 2025-2-27

[3]
Multifaceted therapeutic potentials of catalpol, an iridoid glycoside: an updated comprehensive review.

Inflammopharmacology. 2025-3-17

[4]
Escin Rescues Blood-brain Barrier and Inhibits NLRP3 Inflammasome-mediated Pyroptosis in Rats with Superior Sagital Sinus Thrombosis.

Int J Med Sci. 2025-2-28

[5]
Effect and mechanism of Dichloroacetate in the treatment of stroke and the resolution strategy for side effect.

Eur J Med Res. 2025-3-3

[6]
The T-type voltage-gated Ca channel Ca3.1 involves in the disruption of respiratory epithelial barrier induced by toxin.

Virulence. 2025-12

[7]
Based on bioinformatics, SESN2 negatively regulates ferroptosis induced by ischemia reperfusion via the System Xc-/GPX4 pathway.

Front Genet. 2025-1-29

[8]
Butyric acid alleviates LPS-induced intestinal mucosal barrier damage by inhibiting the RhoA/ROCK2/MLCK signaling pathway in Caco2 cells.

PLoS One. 2024-12-26

[9]
Integrated Metabolomics and Network Pharmacology Study on the Mechanism of Extract for Treating Thrombosis.

Drug Des Devel Ther. 2024

[10]
The role of the gut microbiota in neurodegenerative diseases targeting metabolism.

Front Neurosci. 2024-9-26

本文引用的文献

[1]
Catalpol protects mice against Lipopolysaccharide/D-galactosamine-induced acute liver injury through inhibiting inflammatory and oxidative response.

Oncotarget. 2017-12-12

[2]
Selective inhibition of brain endothelial Rho-kinase-2 provides optimal protection of an in vitro blood-brain barrier from tissue-type plasminogen activator and plasmin.

PLoS One. 2017-5-16

[3]
TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK.

PLoS One. 2017-2-7

[4]
The effect of systemic inflammation on human brain barrier function.

Brain Behav Immun. 2016-11-1

[5]
Catalpol restores LPS-elicited rat microcirculation disorder by regulation of a network of signaling involving inhibition of TLR-4 and SRC.

Am J Physiol Gastrointest Liver Physiol. 2016-12-1

[6]
Catalpol stimulates VEGF production via the JAK2/STAT3 pathway to improve angiogenesis in rats' stroke model.

J Ethnopharmacol. 2016-9-15

[7]
The blood-brain barrier in systemic inflammation.

Brain Behav Immun. 2016-3-16

[8]
Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit.

J Neuroinflammation. 2015-11-25

[9]
Catalpol downregulates vascular endothelial‑cadherin expression and induces vascular hyperpermeability.

Mol Med Rep. 2016-1

[10]
Acute systemic LPS-mediated inflammation induces lasting changes in mouse cortical neuromodulation and behavior.

Neurosci Lett. 2015-3-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索