Roseti Livia, Cavallo Carola, Desando Giovanna, Parisi Valentina, Petretta Mauro, Bartolotti Isabella, Grigolo Brunella
RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
Materials (Basel). 2018 Sep 17;11(9):1749. doi: 10.3390/ma11091749.
Cartilage lesions fail to heal spontaneously, leading to the development of chronic conditions which worsen the life quality of patients. Three-dimensional scaffold-based bioprinting holds the potential of tissue regeneration through the creation of organized, living constructs via a "layer-by-layer" deposition of small units of biomaterials and cells. This technique displays important advantages to mimic natural cartilage over traditional methods by allowing a fine control of cell distribution, and the modulation of mechanical and chemical properties. This opens up a number of new perspectives including personalized medicine through the development of complex structures (the osteochondral compartment), different types of cartilage (hyaline, fibrous), and constructs according to a specific patient's needs. However, the choice of the ideal combination of biomaterials and cells for cartilage bioprinting is still a challenge. Stem cells may improve material mimicry ability thanks to their unique properties: the immune-privileged status and the paracrine activity. Here, we review the recent advances in cartilage three-dimensional, scaffold-based bioprinting using stem cells and identify future developments for clinical translation. Database search terms used to write this review were: "articular cartilage", "menisci", "3D bioprinting", "bioinks", "stem cells", and "cartilage tissue engineering".
软骨损伤无法自发愈合,会导致慢性疾病的发展,从而降低患者的生活质量。基于三维支架的生物打印技术通过“逐层”沉积生物材料和细胞的小单元来创建有组织的活体结构,具有组织再生的潜力。与传统方法相比,该技术在模拟天然软骨方面具有重要优势,能够精确控制细胞分布,并调节机械和化学性质。这开启了许多新的前景,包括通过开发复杂结构(骨软骨腔室)、不同类型的软骨(透明软骨、纤维软骨)以及根据特定患者需求定制的构建体来实现个性化医疗。然而,选择用于软骨生物打印的生物材料和细胞的理想组合仍然是一个挑战。干细胞因其独特的特性,即免疫特权状态和旁分泌活性,可能会提高材料模拟能力。在此,我们综述了使用干细胞进行软骨三维支架生物打印的最新进展,并确定了临床转化的未来发展方向。用于撰写本综述的数据库搜索词为:“关节软骨”、“半月板”、“3D生物打印”、“生物墨水”、“干细胞”和“软骨组织工程”。