Suppr超能文献

淡水湖中参与生物地球化学循环的微生物种群动态。

Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake.

机构信息

Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Microbiome. 2018 Sep 18;6(1):165. doi: 10.1186/s40168-018-0556-7.

Abstract

BACKGROUND

Microbial processes are intricately linked to the depletion of oxygen in in-land and coastal water bodies, with devastating economic and ecological consequences. Microorganisms deplete oxygen during biomass decomposition, degrading the habitat of many economically important aquatic animals. Microbes then turn to alternative electron acceptors, which alter nutrient cycling and generate potent greenhouse gases. As oxygen depletion is expected to worsen with altered land use and climate change, understanding how chemical and microbial dynamics impact dead zones will aid modeling efforts to guide remediation strategies. More work is needed to understand the complex interplay between microbial genes, populations, and biogeochemistry during oxygen depletion.

RESULTS

Here, we used 16S rRNA gene surveys, shotgun metagenomic sequencing, and a previously developed biogeochemical model to identify genes and microbial populations implicated in major biogeochemical transformations in a model lake ecosystem. Shotgun metagenomic sequencing was done for one time point in Aug., 2013, and 16S rRNA gene sequencing was done for a 5-month time series (Mar.-Aug., 2013) to capture the spatiotemporal dynamics of genes and microorganisms mediating the modeled processes. Metagenomic binning analysis resulted in many metagenome-assembled genomes (MAGs) that are implicated in the modeled processes through gene content similarity to cultured organism and the presence of key genes involved in these pathways. The MAGs suggested some populations are capable of methane and sulfide oxidation coupled to nitrate reduction. Using the model, we observe that modulating these processes has a substantial impact on overall lake biogeochemistry. Additionally, 16S rRNA gene sequences from the metagenomic and amplicon libraries were linked to processes through the MAGs. We compared the dynamics of microbial populations in the water column to the model predictions. Many microbial populations involved in primary carbon oxidation had dynamics similar to the model, while those associated with secondary oxidation processes deviated substantially.

CONCLUSIONS

This work demonstrates that the unique capabilities of resident microbial populations will substantially impact the concentration and speciation of chemicals in the water column, unless other microbial processes adjust to compensate for these differences. It further highlights the importance of the biological aspects of biogeochemical processes, such as fluctuations in microbial population dynamics. Integrating gene and population dynamics into biogeochemical models has the potential to improve predictions of the community response under altered scenarios to guide remediation efforts.

摘要

背景

微生物过程与内陆和沿海水体中氧气的消耗密切相关,对经济和生态造成了严重的后果。微生物在生物量分解过程中消耗氧气,破坏了许多具有重要经济价值的水生动物的栖息地。然后,微生物转而利用其他电子受体,这改变了养分循环并产生了强效温室气体。随着土地利用和气候变化的改变,预计氧气消耗会加剧,因此了解化学和微生物动态如何影响死区将有助于指导建模工作,以指导修复策略。需要进一步研究在氧气消耗过程中微生物基因、种群和生物地球化学之间的复杂相互作用。

结果

在这里,我们使用 16S rRNA 基因调查、鸟枪法宏基因组测序和以前开发的生物地球化学模型,来鉴定模型湖泊生态系统中主要生物地球化学转化过程所涉及的基因和微生物种群。于 2013 年 8 月进行了一次鸟枪法宏基因组测序,并进行了为期 5 个月的时间序列(2013 年 3 月至 8 月)的 16S rRNA 基因测序,以捕捉介导模型过程的基因和微生物的时空动态。宏基因组 binning 分析产生了许多与模型过程相关的宏基因组组装基因组(MAG),这些 MAG 通过与培养物的基因内容相似性以及这些途径中关键基因的存在而与模型过程相关。MAG 表明,一些种群能够进行甲烷和硫化物氧化与硝酸盐还原偶联。使用该模型,我们观察到调节这些过程对整个湖泊生物地球化学有重大影响。此外,宏基因组和扩增子文库中的 16S rRNA 基因序列通过 MAG 与过程相关联。我们将水柱中微生物种群的动态与模型预测进行了比较。参与初级碳氧化的许多微生物种群的动态与模型相似,而与次级氧化过程相关的微生物种群则有很大的差异。

结论

这项工作表明,驻留微生物种群的独特能力将极大地影响水柱中化学物质的浓度和形态,除非其他微生物过程进行调整以补偿这些差异。它进一步强调了生物地球化学过程的生物学方面的重要性,例如微生物种群动态的波动。将基因和种群动态纳入生物地球化学模型具有提高对改变情景下群落响应预测的潜力,以指导修复工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c5/6145348/79295364db2b/40168_2018_556_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验