Suppr超能文献

用于肝内胆管癌早期复发术前预测的新型列线图

Novel Nomogram for Preoperative Prediction of Early Recurrence in Intrahepatic Cholangiocarcinoma.

作者信息

Liang Wenjie, Xu Lei, Yang Pengfei, Zhang Lele, Wan Dalong, Huang Qiang, Niu Tianye, Chen Feng

机构信息

Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

出版信息

Front Oncol. 2018 Sep 4;8:360. doi: 10.3389/fonc.2018.00360. eCollection 2018.

Abstract

The emerging field of "radiomics" has considerable potential in disease diagnosis, pathologic grading, prognosis evaluation, and prediction of treatment response. We aimed to develop a novel radiomics nomogram based on radiomics features and clinical characteristics that could preoperatively predict early recurrence (ER) of intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy. A predictive model was developed from a training cohort comprising 139 ICC patients diagnosed between January 2010 and June 2014. Radiomics features were extracted from arterial-phase image of contrast-enhanced magnetic resonance imaging. Feature selection and construction of a "radiomics signature" were through Spearman's rank correlation and least absolute shrinkage and selection operator (LASSO) logistic regression. Combined with clinical characteristics, a radiomics nomogram was developed with multivariable logistic regression. Performance of the nomogram was evaluated with regard to discrimination, calibration, and clinical utility. An independent validation cohort involving 70 patients recruited from July 2014 to March 2016 was used to evaluate the utility of the nomogram developed. The radiomics signature, consisting of nine features, differed significantly between ER patients and non-ER patients in training and validation cohorts. The area under the curve (AUC) of the radiomics signature in training and validation cohorts was 0.82 (confidence interval [CI], 0.74-0.88) and 0.77 (95% CI, 0.65-0.86), respectively. The AUC of the radiomics nomogram combining the radiomics signature and clinical stage in the two cohorts was 0.90 (95%CI, 0.83-0.94) and 0.86 (95% CI, 0.76-0.93), respectively. Decision curve analysis confirmed the clinical usefulness of the radiomics nomogram. The non-invasive radiomics nomogram developed using the radiomics signature and clinical stage could be used to predict ER of ICC after partial hepatectomy.

摘要

新兴的“放射组学”领域在疾病诊断、病理分级、预后评估及治疗反应预测方面具有巨大潜力。我们旨在基于放射组学特征和临床特征开发一种新型放射组学列线图,以术前预测肝内胆管癌(ICC)患者在肝部分切除术后的早期复发(ER)情况。我们从一个包含139例在2010年1月至2014年6月期间确诊的ICC患者的训练队列中开发了一个预测模型。从对比增强磁共振成像的动脉期图像中提取放射组学特征。通过Spearman秩相关分析和最小绝对收缩和选择算子(LASSO)逻辑回归进行特征选择并构建“放射组学特征”。结合临床特征,通过多变量逻辑回归开发了放射组学列线图。从区分度、校准度和临床实用性方面评估了列线图的性能。使用一个独立验证队列(该队列包含2014年7月至2016年3月招募的70例患者)来评估所开发列线图的实用性。由九个特征组成的放射组学特征在训练队列和验证队列的ER患者与非ER患者之间存在显著差异。放射组学特征在训练队列和验证队列中的曲线下面积(AUC)分别为0.82(置信区间[CI],0.74 - 0.88)和0.77(95%CI,0.65 - 0.86)。在两个队列中,将放射组学特征与临床分期相结合的放射组学列线图的AUC分别为0.90(95%CI,0.83 - 0.94)和0.86(95%CI,0.76 - 0.93)。决策曲线分析证实了放射组学列线图的临床实用性。使用放射组学特征和临床分期开发的非侵入性放射组学列线图可用于预测ICC患者肝部分切除术后的早期复发情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecba/6131601/fe768a0cd167/fonc-08-00360-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验