Suppr超能文献

基于机器学习的局部晚期食管癌患者根治性放化疗后放射组学预后模型

Machine learning-based radiomics prognostic model for patients with proximal esophageal cancer after definitive chemoradiotherapy.

作者信息

Li Linrui, Qin Zhihui, Bo Juan, Hu Jiaru, Zhang Yu, Qian Liting, Dong Jiangning

机构信息

Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.

Department of Radiation Oncology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Hefei, China.

出版信息

Insights Imaging. 2024 Nov 29;15(1):284. doi: 10.1186/s13244-024-01853-y.

Abstract

OBJECTIVES

To explore the role of radiomics in predicting the prognosis of proximal esophageal cancer and to investigate the biological underpinning of radiomics in identifying different prognoses.

METHODS

A total of 170 patients with pathologically and endoscopically confirmed proximal esophageal cancer from two centers were enrolled. Radiomics models were established by five machine learning approaches. The optimal radiomics model was selected using receiver operating curve analysis. Bioinformatics methods were applied to explore the potential biological mechanisms. Nomograms based on radiomics and clinical-radiomics features were constructed and assessed by receiver operating characteristics, calibration, and decision curve analyses net reclassification improvement, and integrated discrimination improvement evaluations.

RESULTS

The peritumoral models performed well with the majority of classifiers in the training and validation sets, with the dual-region radiomics model showing the highest integrated area under the curve values of 0.9763 and 0.9471, respectively, and outperforming the single-region models. The clinical-radiomics nomogram showed better predictive performance than the clinical nomogram, with a net reclassification improvement of 34.4% (p = 0.02) and integrated discrimination improvement of 10% (p = 0.007). Gene ontology enrichment analysis revealed that lipid metabolism-related functions are potentially crucial in the process by which the radiomics score could stratify patients.

CONCLUSIONS

A combination of peritumoral radiomics features could improve the predictive performance of intratumoral radiomics to estimate overall survival after definitive chemoradiotherapy in patients with proximal esophageal cancer. Radiomics features could provide insights into the lipid metabolism associated with radioresistance and hold great potential to guide personalized care.

CRITICAL RELEVANCE STATEMENT

This study demonstrates that incorporating peritumoral radiomics features enhances the predictive accuracy of overall survival in proximal esophageal cancer patients after chemoradiotherapy, and suggests a link between radiomics and lipid metabolism in radioresistance, highlighting its potential for personalized treatment strategies.

KEY POINTS

Peritumoral region radiomics features could predict the prognosis of proximal esophageal cancer. Dual-region radiomics features showed significantly better predictive performance. Radiomics features can provide insights into the lipid metabolism associated with radioresistance.

摘要

目的

探讨放射组学在预测近端食管癌预后中的作用,并研究放射组学在鉴别不同预后方面的生物学基础。

方法

纳入来自两个中心的170例经病理和内镜确诊的近端食管癌患者。采用五种机器学习方法建立放射组学模型。使用受试者工作特征曲线分析选择最佳放射组学模型。应用生物信息学方法探索潜在的生物学机制。构建基于放射组学和临床-放射组学特征的列线图,并通过受试者工作特征、校准和决策曲线分析、净重新分类改善和综合判别改善评估进行评估。

结果

瘤周模型在训练集和验证集中的大多数分类器中表现良好,双区域放射组学模型的曲线下综合面积值分别最高,为0.9763和0.9471,优于单区域模型。临床-放射组学列线图的预测性能优于临床列线图,净重新分类改善为34.4%(p = 0.02),综合判别改善为10%(p = 0.007)。基因本体富集分析表明,脂质代谢相关功能在放射组学评分对患者进行分层的过程中可能至关重要。

结论

瘤周放射组学特征的组合可以提高瘤内放射组学在预测近端食管癌患者确定性放化疗后总生存方面的性能。放射组学特征可以为与放射抗性相关的脂质代谢提供见解,并在指导个性化治疗方面具有巨大潜力。

关键相关性声明

本研究表明,纳入瘤周放射组学特征可提高近端食管癌患者放化疗后总生存的预测准确性,并提示放射组学与放射抗性中脂质代谢之间的联系,突出了其在个性化治疗策略中的潜力。

要点

瘤周区域放射组学特征可预测近端食管癌的预后。双区域放射组学特征显示出明显更好的预测性能。放射组学特征可以为与放射抗性相关的脂质代谢提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/100e/11607220/f600a69b8bea/13244_2024_1853_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验