IEEE J Biomed Health Inform. 2019 Jul;23(4):1516-1525. doi: 10.1109/JBHI.2018.2871141. Epub 2018 Sep 19.
Ballistocardiogram (BCG) can be recorded using inexpensive and non-invasive hardware to estimate physiological changes in the heart. In this paper, a methodology is developed to evaluate the impact of additive noise on the BCG signal.
A statistical model is built that incorporates subject-specific BCG morphology. BCG signals segmented by electrocardiogram RR intervals (BCG heartbeats) are averaged to estimate a parent template and subtemplates leveraging the quasi-periodic nature of the heart. Noise statistics are obtained for subtemplates with respect to the parent template. Then, a synthesis algorithm with adjustable additive noise is devised to generate subtemplates based on the individual's parent template and statistics. For the example use of the synthesis algorithm, the average correlation coefficient between subtemplates and the parent template (subtemplate versus parent template approach) is tested as a signal quality index.
A BCG heartbeat synthesis framework that incorporates an individual's BCG morphology and physiological variability was developed to quantify variations in the BCG signal against additive noise. The signal quality assessment of a person's BCG recording can be performed without requiring any a priori knowledge of the person's BCG morphology. A data-driven constraint on the required minimum number of heartbeats for a reliable template estimation was provided.
The impact of additive noise on BCG morphology and estimated physiological parameters can be analyzed using the developed methodology without requiring prior statistics.
This paper can facilitate the performance evaluation of BCG analysis algorithms against additive noise.
心冲击图(BCG)可以使用廉价且非侵入性的硬件进行记录,以估计心脏的生理变化。本文开发了一种方法来评估附加噪声对 BCG 信号的影响。
建立了一个包含个体 BCG 形态的统计模型。通过心电图 RR 间隔(BCG 心跳)对 BCG 信号进行分段,以平均估计父模板和利用心脏准周期性的子模板。针对相对于父模板的子模板获得噪声统计信息。然后,设计了一种具有可调附加噪声的合成算法,根据个体的父模板和统计信息生成子模板。对于合成算法的示例使用,测试了子模板与父模板之间的平均相关系数(子模板与父模板方法)作为信号质量指标。
开发了一种结合个体 BCG 形态和生理可变性的 BCG 心跳合成框架,以量化 BCG 信号对附加噪声的变化。可以在不要求任何人的 BCG 形态先验知识的情况下对个体的 BCG 记录进行信号质量评估。提供了对可靠模板估计所需的最少心跳数的基于数据的约束。
无需先验统计信息即可使用所开发的方法分析附加噪声对 BCG 形态和估计生理参数的影响。
本文可以促进 BCG 分析算法对附加噪声的性能评估。