Suppr超能文献

用于侧颅底解剖的混合现实平台的开发。

Development of a Mixed Reality Platform for Lateral Skull Base Anatomy.

机构信息

Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine.

Department of Biomedical Engineering, Washington University School of Engineering and Applied Science, St. Louis, Missouri.

出版信息

Otol Neurotol. 2018 Dec;39(10):e1137-e1142. doi: 10.1097/MAO.0000000000001995.

Abstract

OBJECTIVES

A mixed reality (MR) headset that enables three-dimensional (3D) visualization of interactive holograms anchored to specific points in physical space was developed for use with lateral skull base anatomy. The objectives of this study are to: 1) develop an augmented reality platform using the headset for visualization of temporal bone structures, and 2) measure the accuracy of the platform as an image guidance system.

METHODS

A combination of semiautomatic and manual segmentation was used to generate 3D reconstructions of soft tissue and bony anatomy of cadaver heads and temporal bones from 2D computed tomography images. A Mixed-Reality platform was developed using C# programming to generate interactive 3D holograms that could be displayed in the HoloLens headset. Accuracy of visual surface registration was determined by target registration error between seven predefined points on a 3D holographic skull and 3D printed model.

RESULTS

Interactive 3D holograms of soft tissue, bony anatomy, and internal ear structures of cadaveric models were generated and visualized in the MR headset. Software user interface was developed to allow for user control of the virtual images through gaze, voice, and gesture commands. Visual surface point matching registration was used to align and anchor holograms to physical objects. The average target registration error of our system was 5.76 mm ± 0.54.

CONCLUSION

In this article, we demonstrate that an MR headset can be applied to display interactive 3D anatomic structures of the temporal bone that can be overlaid on physical models. This technology has the potential to be used as an image guidance tool during anatomic dissection and lateral skull base surgery.

摘要

目的

开发了一种混合现实 (MR) 耳机,可将与物理空间中特定点相关联的交互式全息图进行三维 (3D) 可视化,用于侧颅底解剖。本研究的目的是:1) 使用耳机开发增强现实平台,用于可视化颞骨结构,2) 测量平台作为图像引导系统的准确性。

方法

使用半自动和手动分割技术,从二维计算机断层扫描图像生成尸体头部和颞骨的软组织和骨骼解剖 3D 重建。使用 C# 编程开发了混合现实平台,以生成可在 HoloLens 耳机中显示的交互式 3D 全息图。通过在 3D 全息颅骨和 3D 打印模型上的七个预定义点之间的目标注册误差来确定视觉表面注册的准确性。

结果

在 MR 耳机中生成并可视化了尸体模型的软组织、骨骼解剖和内耳结构的交互式 3D 全息图。开发了软件用户界面,允许用户通过注视、语音和手势命令控制虚拟图像。视觉表面点匹配注册用于对齐和固定全息图到物理对象。我们系统的平均目标注册误差为 5.76 毫米±0.54 毫米。

结论

在本文中,我们证明了 MR 耳机可用于显示颞骨的交互式 3D 解剖结构,这些结构可以叠加在物理模型上。这项技术有可能成为解剖和侧颅底手术中图像引导工具。

相似文献

1
Development of a Mixed Reality Platform for Lateral Skull Base Anatomy.
Otol Neurotol. 2018 Dec;39(10):e1137-e1142. doi: 10.1097/MAO.0000000000001995.
3
Accuracy and feasibility of a dedicated image guidance solution for endoscopic lateral skull base surgery.
Eur Arch Otorhinolaryngol. 2018 Apr;275(4):905-911. doi: 10.1007/s00405-018-4906-7. Epub 2018 Feb 13.
4
Preliminary experience with a new three-dimensional computer-based model for the study and the analysis of skull base approaches.
Childs Nerv Syst. 2010 May;26(5):621-6. doi: 10.1007/s00381-010-1107-0. Epub 2010 Feb 27.
5
Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery.
Neurosurgery. 2009 May;64(5 Suppl 2):216-29; discussion 229-30. doi: 10.1227/01.NEU.0000343744.46080.91.
7
Use of Mixed Reality Visualization in Endoscopic Endonasal Skull Base Surgery.
Oper Neurosurg (Hagerstown). 2020 Jul 1;19(1):43-52. doi: 10.1093/ons/opz355.
9
CIGuide: in situ augmented reality laser guidance.
Int J Comput Assist Radiol Surg. 2020 Jan;15(1):49-57. doi: 10.1007/s11548-019-02066-1. Epub 2019 Sep 11.

引用本文的文献

2
Assessment of Accuracy of Mixed Reality Device for Neuronavigation: Proposed Methodology and Results.
Neurosurg Pract. 2023 Apr 14;4(2):e00031. doi: 10.1227/neuprac.0000000000000036. eCollection 2023 Jun.
3
Targeting accuracy of neuronavigation: a comparative evaluation of an innovative wearable AR platform vs. traditional EM navigation.
Front Digit Health. 2025 Jan 14;6:1500677. doi: 10.3389/fdgth.2024.1500677. eCollection 2024.
5
Augmented Reality-Guided Mastoidectomy Simulation: A Randomized Controlled Trial Assessing Surgical Proficiency.
Laryngoscope. 2025 Feb;135(2):894-900. doi: 10.1002/lary.31791. Epub 2024 Sep 24.
6
Enhancing Surgical Vision: Augmented Reality in Otolaryngology-Head and Neck Surgery.
J Med Ext Real. 2024 Jul 9;1(1):124-136. doi: 10.1089/jmxr.2024.0010. eCollection 2024 Jul.
9
Augmented Reality Integration in Skull Base Neurosurgery: A Systematic Review.
Medicina (Kaunas). 2024 Feb 16;60(2):335. doi: 10.3390/medicina60020335.

本文引用的文献

1
Emerging Applications of Virtual Reality in Cardiovascular Medicine.
JACC Basic Transl Sci. 2018 Jun 25;3(3):420-430. doi: 10.1016/j.jacbts.2017.11.009. eCollection 2018 Jun.
2
Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy.
Proc SPIE Int Soc Opt Eng. 2016;9786. doi: 10.1117/12.2214984. Epub 2016 Mar 18.
3
Recent Development of Augmented Reality in Surgery: A Review.
J Healthc Eng. 2017;2017:4574172. doi: 10.1155/2017/4574172. Epub 2017 Aug 21.
4
Augmented reality visualization in head and neck surgery: an overview of recent findings in sentinel node biopsy and future perspectives.
Br J Oral Maxillofac Surg. 2016 Jul;54(6):694-6. doi: 10.1016/j.bjoms.2015.11.008. Epub 2016 Jan 22.
5
A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.
PLoS One. 2016 Jan 12;11(1):e0146996. doi: 10.1371/journal.pone.0146996. eCollection 2016.
6
Augmented reality for endoscopic sinus surgery with surgical navigation: a cadaver study.
Int Forum Allergy Rhinol. 2016 May;6(5):523-8. doi: 10.1002/alr.21702. Epub 2015 Dec 31.
7
Inattentional blindness increased with augmented reality surgical navigation.
Am J Rhinol Allergy. 2014 Sep-Oct;28(5):433-7. doi: 10.2500/ajra.2014.28.4067.
8
Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery.
JAMA Otolaryngol Head Neck Surg. 2014 Mar;140(3):208-14. doi: 10.1001/jamaoto.2013.6443.
9
Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training.
Comput Methods Programs Biomed. 2014 Feb;113(2):674-81. doi: 10.1016/j.cmpb.2013.11.005. Epub 2013 Nov 16.
10
The state of the art of visualization in mixed reality image guided surgery.
Comput Med Imaging Graph. 2013 Mar;37(2):98-112. doi: 10.1016/j.compmedimag.2013.01.009. Epub 2013 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验