文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CIGuide:原位增强现实激光引导。

CIGuide: in situ augmented reality laser guidance.

机构信息

Medical University Innsbruck, Innsbruck, Austria.

出版信息

Int J Comput Assist Radiol Surg. 2020 Jan;15(1):49-57. doi: 10.1007/s11548-019-02066-1. Epub 2019 Sep 11.


DOI:10.1007/s11548-019-02066-1
PMID:31506882
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6949325/
Abstract

PURPOSE : A robotic intraoperative laser guidance system with hybrid optic-magnetic tracking for skull base surgery is presented. It provides in situ augmented reality guidance for microscopic interventions at the lateral skull base with minimal mental and workload overhead on surgeons working without a monitor and dedicated pointing tools. METHODS : Three components were developed: a registration tool (Rhinospider), a hybrid magneto-optic-tracked robotic feedback control scheme and a modified robotic end-effector. Rhinospider optimizes registration of patient and preoperative CT data by excluding user errors in fiducial localization with magnetic tracking. The hybrid controller uses an integrated microscope HD camera for robotic control with a guidance beam shining on a dual plate setup avoiding magnetic field distortions. A robotic needle insertion platform (iSYS Medizintechnik GmbH, Austria) was modified to position a laser beam with high precision in a surgical scene compatible to microscopic surgery. RESULTS : System accuracy was evaluated quantitatively at various target positions on a phantom. The accuracy found is 1.2 mm ± 0.5 mm. Errors are primarily due to magnetic tracking. This application accuracy seems suitable for most surgical procedures in the lateral skull base. The system was evaluated quantitatively during a mastoidectomy of an anatomic head specimen and was judged useful by the surgeon. CONCLUSION : A hybrid robotic laser guidance system with direct visual feedback is proposed for navigated drilling and intraoperative structure localization. The system provides visual cues directly on/in the patient anatomy, reducing the standard limitations of AR visualizations like depth perception. The custom- built end-effector for the iSYS robot is transparent to using surgical microscopes and compatible with magnetic tracking. The cadaver experiment showed that guidance was accurate and that the end-effector is unobtrusive. This laser guidance has potential to aid the surgeon in finding the optimal mastoidectomy trajectory in more difficult interventions.

摘要

目的:提出了一种用于颅底手术的具有混合光学-磁性跟踪的机器人术中激光引导系统。它为侧颅底的显微镜介入提供了原位增强现实指导,使没有监视器和专用指向工具的外科医生的工作负担最小化。

方法:开发了三个组件:注册工具(Rhinospider)、混合磁光跟踪的机器人反馈控制方案和修改后的机器人末端执行器。Rhinospider 通过在使用磁性跟踪时排除用户在基准定位中的错误,优化了患者和术前 CT 数据的注册。混合控制器使用集成显微镜高清摄像机进行机器人控制,同时引导光束照射在双板设置上,避免磁场失真。对机器人针插入平台(iSYS Medizintechnik GmbH,奥地利)进行了修改,以在兼容显微镜手术的手术场景中高精度地定位激光束。

结果:在幻影中的不同目标位置上对系统精度进行了定量评估。发现的精度为 1.2 毫米±0.5 毫米。误差主要是由于磁性跟踪引起的。这种应用精度似乎适用于大多数侧颅底手术。该系统在解剖头标本的乳突切除术中进行了定量评估,外科医生认为该系统有用。

结论:提出了一种具有直接视觉反馈的混合机器人激光引导系统,用于导航钻孔和术中结构定位。该系统直接在患者解剖结构上提供视觉提示,减少了 AR 可视化的标准限制,如深度感知。为 iSYS 机器人定制的末端执行器对使用手术显微镜是透明的,并且与磁性跟踪兼容。尸体实验表明,该引导系统的准确性高,末端执行器不显眼。这种激光引导有可能帮助外科医生在更困难的手术中找到最佳的乳突切除术轨迹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/0864bfd28da6/11548_2019_2066_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/f7fd665a5939/11548_2019_2066_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/f05d057ae2b2/11548_2019_2066_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/054bd9e505e5/11548_2019_2066_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/896b6e9d29ea/11548_2019_2066_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/a3363055dbff/11548_2019_2066_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/64feab50a7c6/11548_2019_2066_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/9378ef22841b/11548_2019_2066_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/3aaf13a6f068/11548_2019_2066_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/1bff2744e72e/11548_2019_2066_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/09ba3a6cd70f/11548_2019_2066_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/1eabcd259540/11548_2019_2066_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/0864bfd28da6/11548_2019_2066_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/f7fd665a5939/11548_2019_2066_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/f05d057ae2b2/11548_2019_2066_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/054bd9e505e5/11548_2019_2066_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/896b6e9d29ea/11548_2019_2066_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/a3363055dbff/11548_2019_2066_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/64feab50a7c6/11548_2019_2066_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/9378ef22841b/11548_2019_2066_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/3aaf13a6f068/11548_2019_2066_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/1bff2744e72e/11548_2019_2066_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/09ba3a6cd70f/11548_2019_2066_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/1eabcd259540/11548_2019_2066_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b6/6949325/0864bfd28da6/11548_2019_2066_Fig12_HTML.jpg

相似文献

[1]
CIGuide: in situ augmented reality laser guidance.

Int J Comput Assist Radiol Surg. 2019-9-11

[2]
Accuracy and feasibility of a dedicated image guidance solution for endoscopic lateral skull base surgery.

Eur Arch Otorhinolaryngol. 2018-4

[3]
Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.

Acta Otolaryngol. 2007-4

[4]
Fusion of augmented reality imaging with the endoscopic view for endonasal skull base surgery; a novel application for surgical navigation based on intraoperative cone beam computed tomography and optical tracking.

PLoS One. 2020-1-16

[5]
A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

PLoS One. 2016-1-12

[6]
Transrectal ultrasound image-based real-time augmented reality guidance in robot-assisted laparoscopic rectal surgery: a proof-of-concept study.

Int J Comput Assist Radiol Surg. 2019-12-5

[7]
An integrated system for planning, navigation and robotic assistance for skull base surgery.

Int J Med Robot. 2008-12

[8]
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.

Comput Methods Programs Biomed. 2014-9

[9]
Robot-assisted augmented reality surgical navigation based on optical tracking for mandibular reconstruction surgery.

Med Phys. 2024-1

[10]
Projection-based visual guidance for robot-aided RF needle insertion.

Int J Comput Assist Radiol Surg. 2013-11

引用本文的文献

[1]
Advancements in Skull Base Surgery: Navigating Complex Challenges with Artificial Intelligence.

Indian J Otolaryngol Head Neck Surg. 2024-4

[2]
Evaluation Metrics for Augmented Reality in Neurosurgical Preoperative Planning, Surgical Navigation, and Surgical Treatment Guidance: A Systematic Review.

Oper Neurosurg (Hagerstown). 2023-12-26

[3]
Augmented Reality in Otology/Neurotology: A Scoping Review with Implications for Practice and Education.

Laryngoscope. 2023-8

[4]
New hybrid multiplanar cone beam computed tomography-laser-fluoroscopic-guided approach in cochlear implant surgery.

Int J Comput Assist Radiol Surg. 2022-10

[5]
Novel microscope-based visual display and nasopharyngeal registration for auditory brainstem implantation: a feasibility study in an ex vivo model.

Int J Comput Assist Radiol Surg. 2022-2

[6]
Automated fiducial marker detection and localization in volumetric computed tomography images: a three-step hybrid approach with deep learning.

J Med Imaging (Bellingham). 2021-3

本文引用的文献

[1]
Quantifying attention shifts in augmented reality image-guided neurosurgery.

Healthc Technol Lett. 2017-9-18

[2]
A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom.

Comput Assist Surg (Abingdon). 2017-12

[3]
A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation.

Int J Comput Assist Radiol Surg. 2017-8

[4]
Instrument-mounted displays for reducing cognitive load during surgical navigation.

Int J Comput Assist Radiol Surg. 2017-2-23

[5]
Augmented reality in neurosurgery: a systematic review.

Neurosurg Rev. 2017-10

[6]
The uses of smartphones and tablet devices in surgery: A systematic review of the literature.

Surgery. 2015-11

[7]
Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.

J Neurosurg. 2015-7

[8]
Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations.

Acta Neurochir (Wien). 2014-9

[9]
A robotic needle-positioning and guidance system for CT-guided puncture: Ex vivo results.

Minim Invasive Ther Allied Technol. 2014-10

[10]
Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery.

Int J Med Robot. 2013-5-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索