Department of Physics, National Cheng Kung University, Tainan 701, Taiwan.
Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom.
Phys Rev Lett. 2018 Sep 7;121(10):106801. doi: 10.1103/PhysRevLett.121.106801.
The existence of Wigner crystallization, one of the most significant hallmarks of strong electron correlations, has to date only been definitively observed in two-dimensional systems. In one-dimensional (1D) quantum wires Wigner crystals correspond to regularly spaced electrons; however, weakening the confinement and allowing the electrons to relax in a second dimension is predicted to lead to the formation of a new ground state constituting a zigzag chain with nontrivial spin phases and properties. Here we report the observation of such zigzag Wigner crystals by use of on-chip charge and spin detectors employing electron focusing to image the charge density distribution and probe their spin properties. This experiment demonstrates both the structural and spin phase diagrams of the 1D Wigner crystallization. The existence of zigzag spin chains and phases which can be electrically controlled in semiconductor systems may open avenues for experimental studies of Wigner crystals and their technological applications in spintronics and quantum information.
强关联电子的最重要特征之一是维格纳结晶的存在,迄今为止,这种结晶仅在二维系统中得到了明确的观察。在一维(1D)量子线中,维格纳晶体对应于规则间隔的电子;然而,减弱限制并允许电子在第二个维度上松弛,预计会导致形成一种新的基态,构成具有非平凡自旋相和性质的锯齿链。在这里,我们通过使用片上电荷和自旋探测器来报告这种锯齿状维格纳晶体的观察结果,该探测器采用电子聚焦来成像电荷密度分布并探测其自旋性质。该实验展示了一维维格纳结晶的结构和自旋相图。在半导体系统中,可以通过电控制的锯齿形自旋链和相的存在,可能为研究维格纳晶体及其在自旋电子学和量子信息中的技术应用开辟实验研究的途径。