Suppr超能文献

细胞焦亡作为健康和疾病中造血的关键调节因子出现。

Necroinflammation emerges as a key regulator of hematopoiesis in health and disease.

机构信息

Medical Department III of Hematology and Oncology, Klinikum Rechts der Isar, Technische Universität München, 81675, München, Germany.

German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Cell Death Differ. 2019 Jan;26(1):53-67. doi: 10.1038/s41418-018-0194-4. Epub 2018 Sep 21.

Abstract

The hematopoietic system represents an organ system with an exceptional capacity for the production of mature blood cells from a small and mostly quiescent pool of hematopoietic stem cells (HSCs). This extraordinary capacity includes self-renewal but also the propensity to rapidly respond to extrinsic needs, such as acute infections, severe inflammation, and wound healing. In recent years, it became clear that inflammatory signals such as cytokines, chemokine and danger signals from pathogens (PAMPs) or dying cells (DAMPs) impact on HSCs, shaping their proliferation status, lineage bias, and repopulating ability and subsequently increasing the output of mature effector cells. However, inflammatory danger signals negatively impact on the capacity of HSCs to self-renew and to maintain their stem cell capabilities. This is evidenced in conditions of chronic inflammation where bone marrow failure may originate from HSC exhaustion. Even in hematopoietic cancers, inflammatory signals shape the phenotype of the malignant clone as exemplified by necrosome-dependent inflammation elicited during malignant transformation in acute myeloid leukemia. Accordingly, understanding the contribution of inflammatory signals, and specifically necroinflammation, to HSC integrity, HSC long-term functionality, and malignant transformation has attracted substantial research and clinical interest. In this review, we highlight recent developments and open questions at the interplay between inflammation, regulated necrosis, and HSC biology in the context of blood cell development, acute and chronic inflammation, and hematopoietic cancer.

摘要

造血系统是一个具有非凡能力的器官系统,能够从一小部分静止的造血干细胞(HSCs)中产生成熟的血细胞。这种非凡的能力包括自我更新,还包括快速响应外在需求的倾向,如急性感染、严重炎症和伤口愈合。近年来,人们清楚地认识到炎症信号,如细胞因子、趋化因子和病原体(PAMPs)或死亡细胞(DAMPs)的危险信号,会影响 HSCs,塑造其增殖状态、谱系偏向和再殖能力,从而增加成熟效应细胞的输出。然而,炎症危险信号会对 HSCs 的自我更新能力和维持其干细胞能力产生负面影响。在慢性炎症的情况下,骨髓衰竭可能源于 HSC 衰竭,这就证明了这一点。即使在造血癌症中,炎症信号也会塑造恶性克隆的表型,例如急性髓系白血病恶性转化过程中依赖坏死体的炎症。因此,了解炎症信号,特别是坏死炎症,对 HSC 完整性、HSC 长期功能和恶性转化的贡献引起了大量的研究和临床关注。在这篇综述中,我们强调了炎症、调节性坏死和 HSC 生物学在血细胞发育、急性和慢性炎症以及造血癌症中的相互作用方面的最新进展和悬而未决的问题。

相似文献

1
Necroinflammation emerges as a key regulator of hematopoiesis in health and disease.
Cell Death Differ. 2019 Jan;26(1):53-67. doi: 10.1038/s41418-018-0194-4. Epub 2018 Sep 21.
2
Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow.
Exp Cell Res. 2014 Dec 10;329(2):239-47. doi: 10.1016/j.yexcr.2014.09.016. Epub 2014 Sep 22.
3
Protection of hematopoietic stem cells from stress-induced exhaustion and aging.
Curr Opin Hematol. 2020 Jul;27(4):225-231. doi: 10.1097/MOH.0000000000000586.
5
Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis.
Exp Cell Res. 2014 Dec 10;329(2):248-54. doi: 10.1016/j.yexcr.2014.08.017. Epub 2014 Aug 19.
6
Molecular mechanisms underlying lineage bias in aging hematopoiesis.
Semin Hematol. 2017 Jan;54(1):4-11. doi: 10.1053/j.seminhematol.2016.11.002. Epub 2016 Nov 20.
7
Inflammation, Aging and Hematopoiesis: A Complex Relationship.
Cells. 2021 Jun 4;10(6):1386. doi: 10.3390/cells10061386.
8
Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment.
Antioxid Redox Signal. 2014 Oct 10;21(11):1605-19. doi: 10.1089/ars.2014.5941. Epub 2014 Jun 26.

引用本文的文献

1
Exploring ischemic stroke based on the ferroptosis perspective: ECH1 may serve as a new biomarker and therapeutic target.
Front Neurosci. 2025 Aug 22;19:1622760. doi: 10.3389/fnins.2025.1622760. eCollection 2025.
2
DAMPs and radiation injury.
Front Immunol. 2024 Jan 25;15:1353990. doi: 10.3389/fimmu.2024.1353990. eCollection 2024.
3
OGG1 as an Epigenetic Reader Affects NFκB: What This Means for Cancer.
Cancers (Basel). 2023 Dec 28;16(1):148. doi: 10.3390/cancers16010148.
4
Elevated RIPK3 correlates with disease burden in myelofibrosis.
Blood Adv. 2023 Apr 11;7(7):1219-1224. doi: 10.1182/bloodadvances.2021006838.
5
Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections.
Cell Death Dis. 2022 Jul 22;13(7):637. doi: 10.1038/s41419-022-05066-3.
6
Emerging roles of the HECT-type E3 ubiquitin ligases in hematological malignancies.
Discov Oncol. 2021 Oct 8;12(1):39. doi: 10.1007/s12672-021-00435-4.
7
MLKL promotes cellular differentiation in myeloid leukemia by facilitating the release of G-CSF.
Cell Death Differ. 2021 Dec;28(12):3235-3250. doi: 10.1038/s41418-021-00811-1. Epub 2021 Jun 2.
8
AMPKα2 Overexpression Reduces Cardiomyocyte Ischemia-Reperfusion Injury Through Normalization of Mitochondrial Dynamics.
Front Cell Dev Biol. 2020 Aug 27;8:833. doi: 10.3389/fcell.2020.00833. eCollection 2020.
9
ROCK1 knockdown inhibits non-small-cell lung cancer progression by activating the LATS2-JNK signaling pathway.
Aging (Albany NY). 2020 Jun 17;12(12):12160-12174. doi: 10.18632/aging.103386.
10
Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease.
Aging (Albany NY). 2020 Mar 26;12(7):6467-6485. doi: 10.18632/aging.102972.

本文引用的文献

1
Inflammation: a key regulator of hematopoietic stem cell fate in health and disease.
Blood. 2017 Oct 12;130(15):1693-1698. doi: 10.1182/blood-2017-06-780882. Epub 2017 Sep 5.
2
Complexity of bone marrow hematopoietic stem cell niche.
Int J Hematol. 2017 Jul;106(1):45-54. doi: 10.1007/s12185-017-2262-9. Epub 2017 May 22.
3
Initiation and execution mechanisms of necroptosis: an overview.
Cell Death Differ. 2017 Jul;24(7):1184-1195. doi: 10.1038/cdd.2017.65. Epub 2017 May 12.
5
Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis.
Nature. 2017 Apr 6;544(7648):53-58. doi: 10.1038/nature21693. Epub 2017 Mar 29.
6
Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia.
Cell. 2017 Jan 12;168(1-2):59-72.e13. doi: 10.1016/j.cell.2016.12.011. Epub 2017 Jan 5.
7
Myeloid malignancies and the microenvironment.
Blood. 2017 Feb 16;129(7):811-822. doi: 10.1182/blood-2016-09-670224. Epub 2016 Nov 15.
8
Chronic Infection Depletes Hematopoietic Stem Cells through Stress-Induced Terminal Differentiation.
Cell Rep. 2016 Dec 6;17(10):2584-2595. doi: 10.1016/j.celrep.2016.11.031.
9
Stress and Non-Stress Roles of Inflammatory Signals during HSC Emergence and Maintenance.
Front Immunol. 2016 Nov 7;7:487. doi: 10.3389/fimmu.2016.00487. eCollection 2016.
10
Therapeutic targeting of necroptosis by Smac mimetic bypasses apoptosis resistance in acute myeloid leukemia cells.
Oncogene. 2017 Mar;36(11):1487-1502. doi: 10.1038/onc.2016.310. Epub 2016 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验