Suppr超能文献

身份向量在脑电分类中的应用。

Application of identity vectors for EEG classification.

机构信息

Department of Electrical Engineering, Temple University, Philadelphia, PA, USA.

Department of Electrical Engineering, Temple University, Philadelphia, PA, USA.

出版信息

J Neurosci Methods. 2019 Jan 1;311:338-350. doi: 10.1016/j.jneumeth.2018.09.015. Epub 2018 Sep 19.

Abstract

BACKGROUND

Finding an optimal EEG subject verification algorithm is a long standing goal within the EEG community. For every advancement made, another feature set, classifier, or dataset is often introduced; tracking improvements in classification without a consistent benchmark, such as a classifier-feature pairing tested on a publicly available dataset, makes it difficult to understand how and why these improvements occur.

NEW METHOD

Following on previous biometric experiments, I-Vectors and Gaussian Mixture Model-Universal Background Models are compared to an established Mahalanobis classifier. A second experiment then addresses the impact of epoch duration as a function of classification performance across all three classifiers.

RESULTS

The experimental classification results indicate that I-Vectors are more robust than the other classifiers displaying less sensitivity to epoch duration, data composition, and feature selection.

COMPARISON WITH EXISTING METHODS

This I-Vector based approach is compared against commonly used EEG classifiers, such as Mahalanobis and Gaussian mixture models. These classifiers are benchmarked using the publicly available PhysioNet database converted into three feature sets, spectral coherence, power spectral density, and cepstral coefficients.

CONCLUSIONS

The experimental results suggests I-Vectors provide reliable baseline performance by leveling the field between feature set and datasets making them well suited for EEG signal processing tasks.

摘要

背景

在 EEG 社区中,寻找最佳的 EEG 受试者验证算法是一个长期目标。每取得一次进展,通常都会引入另一个特征集、分类器或数据集;如果没有一致的基准(例如在公开可用的数据集上测试的分类器-特征对)来跟踪分类的改进,则很难理解这些改进是如何以及为何发生的。

新方法

在先前的生物识别实验之后,I-Vector 和高斯混合模型-通用背景模型与已建立的 Mahalanobis 分类器进行了比较。然后进行了第二个实验,以研究作为分类性能函数的epoch 持续时间对所有三个分类器的影响。

结果

实验分类结果表明,I-Vector 比其他分类器更稳健,对 epoch 持续时间、数据组成和特征选择的敏感性较低。

与现有方法的比较

将基于 I-Vector 的方法与常用的 EEG 分类器(例如 Mahalanobis 和高斯混合模型)进行了比较。使用公开的 PhysioNet 数据库将这些分类器基准测试为三个特征集,即谱相干性、功率谱密度和倒谱系数。

结论

实验结果表明,I-Vector 通过在特征集和数据集之间实现平衡,为 EEG 信号处理任务提供了可靠的基线性能,因此非常适合这些任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验