Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China.
School of Basic Medical Sciences, Central South University, Changsha, 410000, Hunan, PR China.
Genes Immun. 2019 Jul;20(6):500-508. doi: 10.1038/s41435-018-0045-9. Epub 2018 Sep 24.
Genome-wide association studies (GWASs) have discovered >50 risk loci for type 1 diabetes (T1D). However, those variations only have modest effects on the genetic risk of T1D. In recent years, accumulated studies have suggested that gene-gene interactions might explain part of the missing heritability. The purpose of our research was to identify potential and novel risk genes for T1D by systematically considering the gene-gene interactions through network analyses. We carried out a novel system network analysis of summary GWAS statistics jointly with transcriptomic gene expression data to identify some of the missing heritability for T1D using weighted gene co-expression network analysis (WGCNA). Using WGCNA, seven modules for 1852 nominally significant (P ≤ 0.05) GWAS genes were identified by analyzing microarray data for gene expression profile. One module (tagged as green module) showed significant association (P ≤ 0.05) between the module eigengenes and the trait. This module also displayed a high correlation (r = 0.45, P ≤ 0.05) between module membership (MM) and gene significant (GS), which indicated that the green module of co-expressed genes is of significant biological importance for T1D status. By further describing the module content and topology, the green module revealed a significant enrichment in the "regulation of immune response" (GO:0050776), which is a crucially important pathway in T1D development. Our findings demonstrated a module and several core genes that act as essential components in the etiology of T1D possibly via the regulation of immune response, which may enhance our fundamental knowledge of the underlying molecular mechanisms for T1D.
全基因组关联研究(GWAS)已经发现了 50 多个 1 型糖尿病(T1D)的风险位点。然而,这些变异对 T1D 的遗传风险只有适度的影响。近年来,越来越多的研究表明,基因-基因相互作用可能可以解释部分遗传缺失。我们的研究目的是通过系统地考虑基因-基因相互作用,通过网络分析来确定 T1D 的潜在和新的风险基因。我们对汇总的 GWAS 统计数据进行了一项新的系统网络分析,并结合转录组基因表达数据,使用加权基因共表达网络分析(WGCNA)来识别 T1D 的部分遗传缺失。通过 WGCNA,我们分析了微阵列基因表达谱数据,确定了 1852 个名义上显著(P≤0.05)GWAS 基因的七个模块。一个模块(标记为绿色模块)显示了模块特征基因与性状之间的显著关联(P≤0.05)。该模块还显示了模块成员(MM)和基因显著(GS)之间的高相关性(r=0.45,P≤0.05),这表明共表达基因的绿色模块对 T1D 状态具有重要的生物学意义。通过进一步描述模块的内容和拓扑结构,绿色模块揭示了“免疫反应调节”(GO:0050776)的显著富集,这是 T1D 发展的一个关键途径。我们的研究结果表明,一个模块和几个核心基因可能通过调节免疫反应,在 T1D 的发病机制中充当重要组成部分,这可能增强我们对 T1D 潜在分子机制的基本认识。