Suppr超能文献

可解释的无监督学习可实现高通量成像流式细胞术的精确聚类。

Interpretable unsupervised learning enables accurate clustering with high-throughput imaging flow cytometry.

机构信息

Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.

NanoCellect Biomedical, Inc., San Diego, CA, 92121, USA.

出版信息

Sci Rep. 2023 Nov 23;13(1):20533. doi: 10.1038/s41598-023-46782-w.

Abstract

A primary challenge of high-throughput imaging flow cytometry (IFC) is to analyze the vast amount of imaging data, especially in applications where ground truth labels are unavailable or hard to obtain. We present an unsupervised deep embedding algorithm, the Deep Convolutional Autoencoder-based Clustering (DCAEC) model, to cluster label-free IFC images without any prior knowledge of input labels. The DCAEC model first encodes the input images into the latent representations and then clusters based on the latent representations. Using the DCAEC model, we achieve a balanced accuracy of 91.9% for human white blood cell (WBC) clustering and 97.9% for WBC/leukemia clustering using the 3D IFC images and 3D DCAEC model. Above all, although no human recognizable features can separate the clusters of cells with protein localization, we demonstrate the fused DCAEC model can achieve a cluster balanced accuracy of 85.3% from the label-free 2D transmission and 3D side scattering images. To reveal how the neural network recognizes features beyond human ability, we use the gradient-weighted class activation mapping method to discover the cluster-specific visual patterns automatically. Evaluation results show that the automatically identified salient image regions have strong cluster-specific visual patterns for different clusters, which we believe is a stride for the interpretable neural network for cell analysis with high-throughput IFCs.

摘要

高通量成像流式细胞术 (IFC) 的主要挑战之一是分析大量的成像数据,特别是在没有或难以获得地面真实标签的应用中。我们提出了一种无监督的深度嵌入算法,即基于深度卷积自动编码器的聚类 (DCAEC) 模型,用于对无标签的 IFC 图像进行聚类,而无需任何输入标签的先验知识。DCAEC 模型首先将输入图像编码为潜在表示,然后基于潜在表示进行聚类。使用 DCAEC 模型,我们使用 3D IFC 图像和 3D DCAEC 模型实现了人类白细胞 (WBC) 聚类的平衡准确率为 91.9%,WBC/白血病聚类的平衡准确率为 97.9%。最重要的是,尽管没有人类可识别的特征可以分离具有蛋白质定位的细胞簇,但我们证明融合的 DCAEC 模型可以从无标签的 2D 透射和 3D 侧向散射图像中实现 85.3%的簇平衡准确率。为了揭示神经网络如何识别超出人类能力的特征,我们使用梯度加权类激活映射方法自动发现簇特定的视觉模式。评估结果表明,自动识别的显著图像区域对于不同的簇具有强烈的簇特定视觉模式,我们相信这是可解释的神经网络用于高通量 IFC 细胞分析的一个重要步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ed/10667244/428312377f54/41598_2023_46782_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验