Institute for Applied Physics, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289, Darmstadt, Germany.
Sci Rep. 2019 Aug 2;9(1):11260. doi: 10.1038/s41598-019-47689-1.
Digital holographic microscopy is an emerging, potentially low-cost alternative to conventional light microscopy for micro-object imaging on earth, underwater and in space. Immediate access to micron-scale objects however requires a well-balanced system design and sophisticated reconstruction algorithms, that are commercially available, however not accessible cost-efficiently. Here, we present an open-source implementation of a lens-less digital inline holographic microscope platform, based on off-the-shelf optical, electronic and mechanical components, costing less than $190. It employs a Blu-Ray semiconductor-laser-pickup or a light-emitting-diode, a pinhole, a 3D-printed housing consisting of 3 parts and a single-board portable computer and camera with an open-source implementation of the Fresnel-Kirchhoff routine. We demonstrate 1.55 μm spatial resolution by laser-pickup and 3.91 μm by the light-emitting-diode source. The housing and mechanical components are 3D printed. Both printer and reconstruction software source codes are open. The light-weight microscope allows to image label-free micro-spheres of 6.5 μm diameter, human red-blood-cells of about 8 μm diameter as well as fast-growing plant Nicotiana-tabacum-BY-2 suspension cells with 50 μm sizes. The imaging capability is validated by imaging-contrast quantification involving a standardized test target. The presented 3D-printable portable open-source platform represents a fully-open design, low-cost modular and versatile imaging-solution for use in high- and low-resource areas of the world.
数字全息显微镜是一种新兴的、具有成本效益潜力的替代传统光学显微镜的方法,可用于地球、水下和太空中的微物体成像。然而,要立即获得微米级物体的图像,需要一个平衡良好的系统设计和复杂的重建算法,这些算法虽然已经商业化,但成本效益却不高。在这里,我们展示了一种基于现成的光学、电子和机械组件的无透镜数字线内全息显微镜平台的开源实现,总成本不到 190 美元。它采用蓝光半导体激光读取器或发光二极管、一个针孔、一个由 3 部分组成的 3D 打印外壳和一个单板便携式计算机以及带有菲涅耳-基尔霍夫(Fresnel-Kirchhoff)程序开源实现的相机。我们通过激光读取器实现了 1.55 μm 的空间分辨率,通过发光二极管源实现了 3.91 μm 的空间分辨率。外壳和机械组件均采用 3D 打印。打印机和重建软件的源代码都是开源的。这种重量轻的显微镜可以对 6.5 μm 直径的无标记微球、约 8 μm 直径的人红细胞以及直径 50 μm 的快速生长的烟草 BY-2 悬浮细胞进行成像。成像能力通过涉及标准化测试目标的成像对比度定量来验证。所提出的 3D 可打印便携式开源平台代表了一种完全开放的设计、低成本模块化和多功能成像解决方案,可用于世界上高资源和低资源地区。