Suppr超能文献

氧化铜分级结构的低温合成及其卓越的生物活性。

Low-temperature synthesis of hierarchical structures of copper oxide and their superior biological activity.

作者信息

Naz Sania, Akhtar Javeed, Chaudhary Muhammad Fayyaz, Zia Muhammad

机构信息

Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.

Materials Lab, Department of Chemistry, Mirpur University of Science & Technology (MUST), Azad Jammu and Kashmir, Pakistan.

出版信息

IET Nanobiotechnol. 2018 Oct;12(7):968-972. doi: 10.1049/iet-nbt.2017.0314.

Abstract

In this work, the authors report a facile low-temperature wet-chemical route to prepare morphology-tailored hierarchical structures (HS) of copper oxide. The preparation of copper oxide collides was carried out using varying concentrations of copper acetate and a reducing agent at a constant temperature of 50°C. The prepared HS of CuO were characterised by powdered X-rays diffraction that indicates phase pure having monoclinic structures. The morphology was further confirmed by field-emission scanning electron microscope. It reveals a difference in shape and size of copper oxide HS by changing the concentration of reactants. In order to evaluate the effect of HO on CuO NPs, the prepared CuO are modified by treatment with HO. In general trend, CuOHO collide showed enhanced protein kinase inhibition, antibacterial (maximum zone 16.34 mm against ) and antifungal activities in comparison to unmodified CuO collides. These results reveal that CuO HS exhibit antimicrobial properties and can be used as a potential candidate in pharmaceutical industries.

摘要

在这项工作中,作者报告了一种简便的低温湿化学路线,用于制备形态定制的氧化铜分级结构(HS)。使用不同浓度的醋酸铜和一种还原剂在50°C的恒定温度下进行氧化铜聚集体的制备。所制备的氧化铜HS通过粉末X射线衍射进行表征,结果表明其具有单相纯的单斜结构。通过场发射扫描电子显微镜进一步确认了其形态。结果显示,通过改变反应物浓度,氧化铜HS的形状和尺寸存在差异。为了评估过氧化氢(HO)对氧化铜纳米颗粒(CuO NPs)的影响,对所制备的氧化铜进行了过氧化氢处理改性。总体趋势是,与未改性的氧化铜聚集体相比,氧化铜-过氧化氢(CuO-HO)聚集体表现出增强的蛋白激酶抑制、抗菌(对……最大抑菌圈为16.34 mm)和抗真菌活性。这些结果表明,氧化铜HS具有抗菌性能,可作为制药行业的潜在候选材料。

相似文献

1
Low-temperature synthesis of hierarchical structures of copper oxide and their superior biological activity.
IET Nanobiotechnol. 2018 Oct;12(7):968-972. doi: 10.1049/iet-nbt.2017.0314.
2
Green Synthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanomaterial Derived from .
Int J Nanomedicine. 2020 Apr 16;15:2541-2553. doi: 10.2147/IJN.S240232. eCollection 2020.
3
5
Alpinia officinarum mediated copper oxide nanoparticles: synthesis and its antifungal activity against Colletotrichum gloeosporioides.
Environ Sci Pollut Res Int. 2023 Mar;30(11):28818-28829. doi: 10.1007/s11356-022-24225-9. Epub 2022 Nov 19.
6
Size-dependent antimicrobial response of zinc oxide nanoparticles.
IET Nanobiotechnol. 2014 Jun;8(2):111-7. doi: 10.1049/iet-nbt.2012.0008.
7
Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria.
Microb Pathog. 2019 Feb;127:267-276. doi: 10.1016/j.micpath.2018.12.017. Epub 2018 Dec 11.
8
Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains.
Int J Nanomedicine. 2012;7:3527-35. doi: 10.2147/IJN.S29020. Epub 2012 Jul 10.
9
Biosynthesis of Copper Oxide Nanoparticles with Potential Biomedical Applications.
Int J Nanomedicine. 2020 Jun 9;15:3983-3999. doi: 10.2147/IJN.S255398. eCollection 2020.
10
Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy.
Int J Nanomedicine. 2012;7:3597-612. doi: 10.2147/IJN.S32648. Epub 2012 Jul 11.

引用本文的文献

本文引用的文献

1
Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities.
IET Nanobiotechnol. 2017 Mar;11(2):193-199. doi: 10.1049/iet-nbt.2015.0099.
2
Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum.
Antimicrob Resist Infect Control. 2013 Nov 18;2:31. doi: 10.1186/2047-2994-2-31. eCollection 2013.
4
5
Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains.
Int J Nanomedicine. 2012;7:3527-35. doi: 10.2147/IJN.S29020. Epub 2012 Jul 10.
6
Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue.
J Colloid Interface Sci. 2011 Mar 1;355(1):15-22. doi: 10.1016/j.jcis.2010.11.022. Epub 2010 Nov 23.
7
Cu nanoparticles derived from CuO electrodes in lithium cells.
Nanotechnology. 2005 Oct;16(10):2338-41. doi: 10.1088/0957-4484/16/10/057. Epub 2005 Aug 26.
8
The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver.
Int J Antimicrob Agents. 2009 Aug;34(2):103-10. doi: 10.1016/j.ijantimicag.2009.01.017. Epub 2009 Mar 31.
9
Cytotoxicity and genotoxicity of silver nanoparticles in human cells.
ACS Nano. 2009 Feb 24;3(2):279-90. doi: 10.1021/nn800596w.
10
Characterisation of copper oxide nanoparticles for antimicrobial applications.
Int J Antimicrob Agents. 2009 Jun;33(6):587-90. doi: 10.1016/j.ijantimicag.2008.12.004. Epub 2009 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验