Departments of Microbiology and Medicine, New York University School of Medicine, New York, New York, USA.
Nat Biotechnol. 2018 Nov;36(10):971-976. doi: 10.1038/nbt.4203. Epub 2018 Sep 24.
Staphylococcus aureus and other staphylococci continue to cause life-threatening infections in both hospital and community settings. They have become increasingly resistant to antibiotics, especially β-lactams and aminoglycosides, and their infections are now, in many cases, untreatable. Here we present a non-antibiotic, non-phage method of treating staphylococcal infections by engineering of the highly mobile staphylococcal pathogenicity islands (SaPIs). We replaced the SaPIs' toxin genes with antibacterial cargos to generate antibacterial drones (ABDs) that target the infecting bacteria in the animal host, express their cargo, kill or disarm the bacteria and thus abrogate the infection. Here we have constructed ABDs with either a CRISPR-Cas9 bactericidal or a CRISPR-dCas9 virulence-blocking module. We show that both ABDs block the development of a murine subcutaneous S. aureus abscess and that the bactericidal module rescues mice given a lethal dose of S. aureus intraperitoneally.
金黄色葡萄球菌和其他葡萄球菌继续在医院和社区环境中引起危及生命的感染。它们对抗生素的耐药性越来越强,尤其是β-内酰胺类和氨基糖苷类抗生素,而且它们的感染现在在许多情况下是无法治疗的。在这里,我们通过工程高度移动的葡萄球菌致病性岛(SaPIs)提供了一种非抗生素、非噬菌体的治疗葡萄球菌感染的方法。我们用抗菌有效载荷替换了 SaPIs 的毒素基因,以生成靶向动物宿主感染细菌的抗菌无人机(ABDs),表达它们的有效载荷,杀死或解除细菌的武装,从而消除感染。在这里,我们构建了具有 CRISPR-Cas9 杀菌或 CRISPR-dCas9 毒力阻断模块的 ABDs。我们表明,两种 ABD 都能阻止小鼠皮下金黄色葡萄球菌脓肿的发展,并且杀菌模块可以挽救接受腹腔内金黄色葡萄球菌致死剂量的小鼠。