Ahmed Mohamed Mustaf, Kayode Hassan Hakeem, Okesanya Olalekan John, Ukoaka Bonaventure Michael, Eshun Gilbert, Mourid Marina Ramzy, Adigun Olaniyi Abideen, Ogaya Jerico Bautista, Mohamed Zeinab Omar, Lucero-Prisno Don Eliseo
Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu, Somalia.
Institute for Global Health, SIMAD University, Mogadishu, Somalia.
Infect Drug Resist. 2024 Nov 26;17:5229-5245. doi: 10.2147/IDR.S494327. eCollection 2024.
Antimicrobial resistance (AMR) is a critical global health concern that threatens the efficacy of existing antibiotics and poses significant challenges to public health and the economy worldwide. This review explores the potential of CRISPR-Cas systems as a novel approach to combating AMR and examines current applications, limitations, and prospects.
A comprehensive literature search was conducted across multiple databases, including PubMed, Google Scholar, Scopus, and Web of Science, covering publications published from 2014 to August 2024. This review focuses on CRISPR-Cas technologies and their applications in AMR.
CRISPR-Cas systems have demonstrated efficacy in combating antimicrobial resistance by targeting and eliminating antibiotic-resistance genes. For example, studies have shown that CRISPR-Cas9 can effectively target and eliminate colistin resistance genes in MCR-1 plasmids, restoring susceptibility to carbapenems in bacteria such as and . Further molecular findings highlight the impact of CRISPR-Cas systems on various bacterial species, such as Enterococcus faecalis, in which CRISPR systems play a crucial role in preventing the acquisition of resistance genes. The effectiveness of CRISPR-Cas in targeting these genes varies due to differences in CRISPR locus formation among bacterial species. For instance, variations in CRISPR loci influence the targeting of resistance genes in , and CRISPR-Cas9 successfully reduces resistance by targeting genes such as tetM and ermB.
CRISPR-Cas systems are promising for fighting AMR by targeting and eliminating antibiotic-resistant genes, as demonstrated by the effective targeting of colistin resistance genes on MCR-1 plasmids and their similar activities. However, the effectiveness of CRISPR-Cas is affected by variations in the CRISPR loci among bacterial species. Challenges persist, such as optimizing delivery methods and addressing off-target effects to ensure the safety and precision of CRISPR-Cas systems in clinical settings.
抗菌药物耐药性(AMR)是一个关键的全球卫生问题,它威胁到现有抗生素的疗效,并给全球公共卫生和经济带来重大挑战。本综述探讨了CRISPR-Cas系统作为对抗AMR的一种新方法的潜力,并研究了其当前的应用、局限性和前景。
在多个数据库中进行了全面的文献检索,包括PubMed、谷歌学术、Scopus和科学网,涵盖了2014年至2024年8月发表的文献。本综述重点关注CRISPR-Cas技术及其在AMR中的应用。
CRISPR-Cas系统已通过靶向和消除抗生素耐药基因在对抗抗菌药物耐药性方面显示出有效性。例如,研究表明,CRISPR-Cas9可以有效地靶向并消除MCR-1质粒中的黏菌素耐药基因,恢复细菌(如[具体细菌名称1]和[具体细菌名称2])对碳青霉烯类药物的敏感性。进一步的分子研究结果突出了CRISPR-Cas系统对各种细菌物种的影响,如粪肠球菌,其中CRISPR系统在防止耐药基因的获得方面起着关键作用。由于细菌物种之间CRISPR位点形成的差异,CRISPR-Cas靶向这些基因的有效性各不相同。例如,CRISPR位点的变异影响了[具体细菌名称3]中耐药基因的靶向,并且CRISPR-Cas9通过靶向tetM和ermB等基因成功降低了耐药性。
如对MCR-1质粒上黏菌素耐药基因的有效靶向及其类似活性所示,CRISPR-Cas系统通过靶向和消除抗生素耐药基因对抗AMR具有广阔前景。然而,CRISPR-Cas的有效性受到细菌物种之间CRISPR位点变异的影响。挑战依然存在,例如优化递送方法和解决脱靶效应,以确保CRISPR-Cas系统在临床环境中的安全性和精确性。