Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, 1550 Harbor Avenue, Pudong, Shanghai, 201306, China.
Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, 1550 Harbor Avenue, Pudong, Shanghai, 201306, China.
Comput Biol Med. 2018 Nov 1;102:75-85. doi: 10.1016/j.compbiomed.2018.09.012. Epub 2018 Sep 17.
Independent component analysis (ICA) has become a widely used method for functional magnetic resonance imaging (fMRI) data analysis. However, spatial ICA usually performs better than temporal ICA with regard to the stability and accuracy of functional connectivity detection, and temporal ICA is often not feasible when it is applied to the analysis of real fMRI data of the whole brain because of the excessive spatial dimensions. In this paper, to overcome these problems, we propose a sub-packet constrained temporal ICA (SCTICA) method to take advantage of the a priori information using a multi-objective optimization framework with the Newton iterative algorithm. Moreover, a splitting strategy is presented to improve the feasibility of the temporal ICA for whole brain fMRI data analysis. The experimental results of real data show that the splitting strategy improved the ability of the temporal ICA to analyze whole brain fMRI data. Furthermore, the experimental results also demonstrated that the proposed SCTICA method can not only improve the stability of the temporal ICA, but can also improve the functional connectivity detection ability compared with the classical ICA and ICA with a priori information methods. In brief, the proposed SCTICA method overcomes the problem that prevents temporal ICA from being applied to fMRI data of the whole brain, and the functional connectivity detection performance is greatly improved compared with that of traditional methods.
独立成分分析(ICA)已成为功能磁共振成像(fMRI)数据分析的一种广泛应用的方法。然而,在功能连接检测的稳定性和准确性方面,空间 ICA 通常比时间 ICA 表现更好,并且由于空间维度过大,时间 ICA 通常不适用于整个大脑真实 fMRI 数据的分析。在本文中,为了克服这些问题,我们提出了一种子包约束时间 ICA(SCTICA)方法,利用多目标优化框架和牛顿迭代算法利用先验信息。此外,还提出了一种分割策略来提高时间 ICA 对全脑 fMRI 数据分析的可行性。真实数据的实验结果表明,分割策略提高了时间 ICA 分析全脑 fMRI 数据的能力。此外,实验结果还表明,所提出的 SCTICA 方法不仅可以提高时间 ICA 的稳定性,而且与经典 ICA 和具有先验信息的方法相比,还可以提高功能连接检测能力。总之,所提出的 SCTICA 方法克服了时间 ICA 无法应用于整个大脑 fMRI 数据的问题,与传统方法相比,功能连接检测性能得到了极大的提高。